
C++ Front End
Internal Documentation (excerpt)

Copyright © 1992-2023 Edison Design Group, Inc.

18 Drake Way, Flanders NJ, 07836 732-993-3341

December 13, 2023

(Version 6.6)

Chapter 1
External Interface 1

1.1 Command Line . 1
1.1.1 Language Dialect Options . 2
1.1.2 Input/output Options . 8
1.1.3 Preprocessor Options . 10
1.1.4 Diagnostic Options . 12
1.1.5 Individual Language Features. 15
1.1.6 Alternative Language Behaviors . 21
1.1.7 Template Instantiation Options . 27
1.1.8 Code Generation Options . 29
1.1.9 Precompiled Header Options . 31
1.1.10 C++/CLI Options . 31
1.1.11 Front End Debugging Options . 32
1.1.12 Miscellaneous Options . 33
1.2 Environment Variables. 34
1.3 Diagnostic Messages . 34
1.4 Termination Messages . 36
1.5 Response to Signals . 37
1.6 Exit Status . 37
1.7 Finding Include Files . 37
1.8 Finding Module Files. 38
1.9 C++ Dialect Accepted . 38
1.9.1 C++20 Implementation Status . 39
1.9.2 C++23 Implementation Status . 39
1.9.3 Anachronisms Accepted . 39
1.9.4 “Default” C++ Mode . 40
1.9.5 GNU C++ Mode . 42
1.9.6 Microsoft C++ Mode . 43
1.9.7 Microsoft C++/CLI Mode. 43
1.9.8 Extensions Accepted in Sun Compatibility Mode . 43
1.9.9 Anachronisms Accepted . 46
1.9.10 Extensions Accepted in Cfront 2.1 Compatibility Mode 47
1.9.11 Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode. 49
1.10 C Dialect Accepted . 53
1.10.1 C99 Features Available in Other Modes. 53
1.10.2 ANSI C Extensions . 56
1.10.3 K&R/pcc Mode. 60
1.10.4 Extensions Accepted in SVR4 Compatibility Mode . 63
1.11 Namespace Support . 64
1.12 Template Instantiation . 65
1.12.1 Automatic Instantiation. 66
1.12.2 Instantiation Modes. 69
1.12.3 Instantiation #pragma Directives . 70
1.12.4 Implicit Inclusion . 71

1.12.5 Exported Templates . 72
1.13 Extern Inline Functions . 75
1.14 Predefined Macros . 75
1.15 Pragmas . 79
1.15.1 Instantiation Pragmas . 79
1.15.2 Precompiled Header Pragmas. 79
1.15.3 Once Pragma. 80
1.15.4 Diagnostic Pragmas . 80
1.15.5 Pack Pragma . 81
1.15.6 Microsoft Pragmas . 82
1.15.7 IL Display Pragma . 82
1.16 Precompiled Headers . 83
1.16.1 Automatic Precompiled Header Processing . 83
1.16.2 Manual Precompiled Header Processing . 86
1.16.3 Other Ways for Users to Control Precompiled Headers 86
1.16.4 Performance Issues . 86

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 1

Chapter 1

External Interface

Bear in mind that this information applies to the standard product. If any local modifications are made, the documen-
tation given to users must be adjusted accordingly.

1.1 Command Line

The front end is invoked by a command of the form

edgcpfe [options] ifile

to compile the single input file ifile. If - (hyphen) is specified for ifile, the front end reads from stdin.1 No partic-
ular file name suffix is required on input files.

Command line options may be specified using either single character option codes (e.g., -o) or keyword options
(e.g., --output). A single character option specification consists of a hyphen followed by one or more option char-
acters (e.g., -Ab). If an option requires an argument, the argument may immediately follow the option letter, or may
be separated from the option letter by white space. A keyword option specification consists of two hyphens followed
by the option keyword (e.g., --strict). Keyword options may be abbreviated by specifying as many of the leading
characters of the option name as are needed to uniquely identify an option name (for example, the --
wchar_t_keyword option may be abbreviated as --wc). If an option requires an argument, the argument may be
separated from the keyword by white space, or the keyword may be immediately followed by =option. When the
second form is used there may not be any white space on either side of the equals sign.

If the configuration flag COMPILE_MULTIPLE_SOURCE_FILES is defined as TRUE, a list of files may appear for
ifile. If a list of files is specified, options that specify a compilation output file (--output, --list, and --xref)
may not be used, and the name of each source file is written to the error output file as the compilation of that file
begins.

When one of the preprocessing-only modes is specified (see below), the --output option can be used to specify the
preprocessing output file. If --output is not specified, preprocessing output is written to stdout. Preprocessing
output has trigraphs and line splices processed (and thus they do not appear in their original form).

1.This is not recommended in general, since diagnostic messages and the like will then not include a file name or will refer to the
file name “-”.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 2

When compilation (rather than just preprocessing) is done, the output (if any) from the compilation is written to a file
selected by the back end; see the documentation of the back end for further information. For versions of the front end
that generate an intermediate language file, the --output option can be used to specify the IL output file.

The options are described in the following subsections (organized by category).

1.1.1 Language Dialect Options

The following options select among various C and C++ dialects.

--anachronisms
--no_anachronisms Enable or disable anachronisms in C++ mode. The default for this option is spec-

ified by DEFAULT_ALLOW_ANACHRONISMS. This option is valid only in C++
mode.

--c
-m Enable compilation of C rather than C++.

--c89 Enable the compilation of the C89 version of C.

--c99
--no_c99 Enable or disable compilation of the C99 version of C. In either case, C rather

than C++ is compiled.

--c11 Enable language features added in the C11 standard. This option cannot be com-
bined with options enabling or requiring a C++ mode.

--c18
--c17 Enable support for C18 (which is only a minor “bug fix” change from C11). This

option cannot be combined with options enabling or requiring a C++ mode.

--c23 Enable language features added in drafts of the anticipated C23 standard. This
option cannot be combined with options enabling or requiring a C++ mode.

--old_c
-K Enable K&R/pcc mode, which approximates the behavior of the standard UNIX

pcc. ANSI/ISO C features that do not conflict with K&R/pcc features are still
supported in this mode.

--c++
-p Enable compilation of C++. This is the default.

--c++03 Enable compilation of C++ as specified by the ISO/IEC 14882:2003 standard by
explicitly disabling all C++11 features, regardless of their configured default
values (but individual C++11 features can be enabled on the command line).
This option implicitly enables C++ mode and can be combined with the options
enabling strict ANSI/ISO conformance, as well as other emulation modes (e.g., -
-microsoft, --g++).

--c++11
--no_c++11
--c++0x

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 3

--no_c++0x Enable or disable extensions added in the C++11 standard. This option is only
valid in C++ mode and can be combined with the options enabling strict ANSI/
ISO conformance.

--c++14 Enable language features added in the C++14 standard. This option cannot be
combined with options enabling or requiring a C mode.

--c++17 Enable language features added in the C++17 standard. This option cannot be
combined with options enabling or requiring a C mode.

--c++20 Enable language features added in the C++20 standard. This option cannot be
combined with options enabling or requiring a C mode.

--c++23 Enable language features added in drafts of the anticipated C++23 standard. This
option cannot be combined with options enabling or requiring a C mode.

--cfront_2.1
-b Enable compilation of C++ with compatibility with cfront version 2.1. This

causes the compiler to accept language constructs that, while not part of the C++
language definition, are accepted by the AT&T C++ Language System (cfront)
release 2.1. This option also enables acceptance of anachronisms.

--cfront_3.0 Enable compilation of C++ with compatibility with cfront version 3.0. This
causes the compiler to accept language constructs that, while not part of the C++
language definition, are accepted by the AT&T C++ Language System (cfront)
release 3.0. This option also enables acceptance of anachronisms.

--c++cli
--no_c++cli
--cppcli
--no_cppcli
--clr Enable or disable compilation of C++/CLI source. This option implies Microsoft

C++ mode; it cannot be combined with options that are contrary to such a mode
(e.g., forcing strict mode) or with the option --microsoft_version with a
value less than 1600.

--c++cx
--no_c++cx
--cppcx
--no_cppcx Enable or disable compilation of C++/CX source. This option implies Microsoft

C++ mode; it cannot be combined with options that are contrary to such a mode
(e.g., forcing strict mode) or with the option --microsoft_version with a
value less than 1600. Support for this mode is preliminary and will be improved
in future versions of the front end.

--clang
--no_clang Enable or disable clang C or C++ language compatibility features. This option

also enables the GNU C or C++ language compatibility features. It is only recog-
nized when GNU_EXTENSIONS_ALLOWED is TRUE. As of this writing, the
only effect of clang mode apart from enabling GNU emulation is to enable the
feature-test macros like __has_feature.

--clang_version version-number

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 4

The version of the clang compiler that should be emulated. Version x.y.z of the
clang compiler is encoded as x*10000+y*100+z (e.g., version 3.4.1 is emulated
with the option “--clang_version 30401”).

--embedded_c
--no_embedded_c Enable or disable support for all Embedded C language extensions (fixed-point

types, named address space qualifiers, and named-register storage class specifi-
ers). These options are not available with C++ modes.

--embedded_c++ Enable the diagnosis of noncompliance with the “Embedded C++” subset (from
which templates, exceptions, namespaces, new-style casts, RTTI, multiple inher-
itance, virtual base classes, and mutable are excluded).

--g++
--no_g++ Enable or disable GNU C++ language compatibility features. This option also

specifies that the source language being compiled is C++. It is only recognized
when GNU_EXTENSIONS_ALLOWED is TRUE.

--gcc
--no_gcc Enable or disable GNU C language compatibility features. This option also spec-

ifies that the source language being compiled is C. It is only recognized when
GNU_EXTENSIONS_ALLOWED is TRUE.

--gnu_version version-number
The version of the GNU compiler that should be emulated in any of the GNU (C
or C++) modes. Version x.y.z of the GNU compiler is encoded as
x*10000+y*100+z (e.g., version 3.4.1 is emulated with the option “--
gnu_version 30401”).

--microsoft
--microsoft_16
--no_microsoft Enable or disable Microsoft emulation mode. These options may only be used if

MICROSOFT_EXTENSIONS_ALLOWED is TRUE. --microsoft enables 32-
bit mode. --microsoft_16 enables 16-bit mode (i.e., support for near and
far; the option is accepted only if NEAR_AND_FAR_ALLOWED is TRUE). The
default values are supplied by DEFAULT_MICROSOFT_MODE and
DEFAULT_NEAR_AND_FAR_ENABLED. In Microsoft emulation mode, lan-
guage features that are not recognized by the Microsoft compiler are disabled by
default. In most cases these features can then be enabled through use of other
command line options (for example, --bool). Microsoft bugs mode is also
enabled when DEFAULT_MICROSOFT_BUGS is TRUE.

--microsoft_version version-number
The version of the Microsoft compiler that should be emulated in Microsoft
mode. This enables or disables particular Microsoft mode features when the
acceptance of those features varies between versions of the Microsoft compiler.
The value specified is the value of the predefined macro _MSC_VER supplied by
the version of the Microsoft compiler to be emulated. For example, 1100 is the
value that corresponds to Visual C++ version 5.0. This option also enables Mic-
rosoft mode, but it does not imply either 16-bit or 32-bit mode (i.e., it uses what-
ever value has already been specified, or the default value if none has been
explicitly specified).

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 5

--microsoft_build_number build-number
The “build number” of the Microsoft compiler that should be emulated in Micro-
soft mode (this option also enables Microsoft mode). This value is used to set the
value of the predeclared macro _MSC_FULL_VER (which is a concatenation of
the microsoft version number and the build number; e.g. with “--microsoft-
_version 1600 --microsoft_build_number 30507” _MSC_-
FULL_VER is defined to expand to 160030507). The default build number is
99999.

--microsoft_bugs
--no_microsoft_bugs Enable or disable recognition of certain Microsoft bugs. These options also

enable Microsoft mode. Microsoft bugs mode is automatically enabled when
Microsoft mode is used and DEFAULT_MICROSOFT_BUGS is TRUE.

--ms_await Emulate the Microsoft Visual Studio /await command-line switch that enables
a pre-C++20 version of coroutines.

--ms_await_strict Emulate the Microsoft Visual Studio /await:strict command-line switch
that enables a pre-C++20 version of coroutines.

--ms_c11 Emulate the Microsoft Visual Studio /std:c11 command-line switch by
enabling the same set of C11 options that are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro. microsoft_version must
have a value of at least 1927 for this option to have an effect.

--ms_c17 Emulate the Microsoft Visual Studio /std:c17 command-line switch by
enabling the same set of C17 options that are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro. microsoft_version must
have a value of at least 1928 for this option to have an effect.

--ms_c23 Emulate the Microsoft Visual Studio /std:c23 command-line switch by
enabling the same set of C23 options that are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro. microsoft_version must
have a value of at least 1935 for this option to have an effect.

--ms_c++14 Emulate the Microsoft Visual Studio /std:c++14 command-line switch by
enabling the same set of C++14 options that are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro. microsoft_version must
have a value of at least 1903 to use this option.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 6

--ms_c++17 Emulate the Microsoft Visual Studio /std:c++17 command-line switch by
enabling the same set of C++17 options that are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro. microsoft_version must
have a value of at least 1911 to use this option.

--ms_c++20 Emulate the Microsoft Visual Studio /std:c++20 command-line switch by
enabling the same set of C++20 options that are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro. microsoft_version must
have a value of at least 1920 to use this option.

--ms_c++latest Emulate the Microsoft Visual Studio /std:c++latest command-line switch
by enabling the same set of C++ options as are supported by the Visual Studio
version that corresponds to the value of microsoft_version. If not speci-
fied explicitly with the --microsoft_version command-line option, mic-
rosoft_version is set to the value of the
DEFAULT_MICROSOFT_VERSION macro.

--ms_compatibility
--no_ms_compatibility Enable or disable certain Microsoft compatibility options (as defined by the

clang -fms-compatibility option). Unlike the --microsoft option
(i.e., Microsoft emulation mode), this command-line option can be combined
with other emulation modes (e.g., --clang). Specifying --ms_compati-
bility implies --ms_extensions. If not specified explicitly with the --
microsoft_version command-line option, microsoft_version is set
to the value of the DEFAULT_MICROSOFT_VERSION macro.

--ms_std_preprocessor
--no_ms_std_preprocessor

Enable or disable a mode in which the behavior of the preprocessor in Microsoft
emulation mode conforms with the C and C++ Standards; when disabled, the pre-
processor emulates the behavior of the traditional Microsoft preprocessor.

--ms_stdc
--no_ms_stdc Emulate the /Zc:__STDC__ option of Microsoft’s Visual Studio by setting the

value of the __STDC__ macro to the value 1 or leaving the macro undefined
respectively. Implicitly enables Microsoft emulation mode.

--ms_cplusplus_std_value
--no_ms_cplusplus_std_value

Emulate the /Zc:__cplusplus[-] option of Microsoft’s Visual Studio by
either setting the value of the __cplusplus macro to the value implied by the
C++ standard currently being implemented or leaving it as the default value of
199711L used by Visual Studio. Implicitly enables Microsoft emulation mode.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 7

--ms_extensions
--no_ms_extensions Enable or disable certain Microsoft extensions (as defined by the clang -fms-

extensions option). Unlike the --microsoft option (i.e., Microsoft emu-
lation mode), this command-line option can be combined with other emulation
modes (e.g., --clang). If not specified explicitly with the --microsoft-
_version command-line option, microsoft_version is set to the value of
the DEFAULT_MICROSOFT_VERSION macro.

--ms_permissive
--no_ms_permissive Enable or disable “permissive” mode during Microsoft emulation. These

command-line options control emulation of the Visual Studio /permis-
sive[-] command-line options and can be used in C, C++, C++/CLI, or C++/
CX modes. The default value is controlled by the DEFAULT_MS_PERMISSIVE
configuration macro. Specifying one of these command-line options also implic-
itly enables Microsoft emulation mode.

--nonstd_gnu_keywords
--no_nonstd_gnu_keywords

In GNU modes, --no_nonstd_gnu_keywords disables GNU-specific key-
words that do not start with underscores (notably: typeof); the option has no
effect in other modes. --nonstd_gnu_keywords is only accepted in GNU
modes and enables any keywords that were disabled by a prior occurrence of --
no_nonstd_gnu_keywords.

--no_strict_gnu
--strict_gnu For every version of the C and C++ ISO standards, the GNU and Clang compil-

ers support both the language as defined by ISO (with -std=c* command-line
options) as well as the language with certain incompatible compiler-specific
extensions (with -std=gnu*). Specifying --strict_gnu on the command-
line causes the front end to emulate the -std=c* behavior of the selected GNU/
Clang compiler, while specifying --no_strict_gnu emulates the -
std=gnu* behavior. When these options are not specified, the front end implic-
itly emulates the -std=c* behavior whenever any --c* or --c++*
command-line options are specified (e.g., --c++11 mimics -std=c++11);
otherwise the -std=gnu* behavior is emulated.

--strict_warnings or -a
--strict or -A Enable strict ANSI/ISO mode, which provides diagnostic messages when non-

standard features are used, and disables features that conflict with ANSI/ISO C
or C++. This is compatible with both C and C++ mode. It is not compatible with
pcc mode. ANSI/ISO violations can be issued as either warnings or errors
depending on which command line option is used. The -A and --strict
options cause errors to be issued whereas the -a and --strict_warnings
options produce warnings. The error threshold is set so that the requested diag-
nostics will be listed.

--stricter_template_checking
If a selected dialect weakens the type checking performed in a template, adding
this option makes it stricter again (although not always as strict as what is done in
strict ANSI/ISO mode).

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 8

--sun
--no_sun Enable or disable Sun CC (version 5.x) language compatibility features. This

option can only be used in C++ mode, and cannot be combined with options to
enable strict ANSI mode, or compatibility with cfront, Microsoft, or GNU. It is
only recognized when SUN_EXTENSIONS_ALLOWED is TRUE.

--svr4
--no_svr4 Enable or disable recognition of SVR4 C compatibility features. The default

value is supplied by DEFAULT_SVR4_C_MODE. This option also specifies that
the source language being compiled is ANSI C.

--upc
--no_upc Enable or disable UPC (Unified Parallel C) extensions.

--upc_threads n Specify a fixed number of UPC threads (this is the value of the THREADS iden-
tifier).

--upc_strict
--upc_relaxed Specify the default UPC access method for objects of shared types.

1.1.2 Input/output Options

The following options control the kind of input read or output produced or the location of such input or output.

--unicode_source_kind kind
Source input files that do not begin with a byte order mark indicating the kind of
Unicode encoding are assumed to use the Unicode encoding indicated by kind.
Possible values of kind are UTF-8, UTF-16, UTF-16LE (little-endian), UTF-
16BE (big-endian), and none (to indicate that the source file is not Unicode).

--gen_c_file_name file-name
When using the C-generating back end or the C++-generating back end, this
option specifies the file name to be used for the generated output.

--dependencies
-M Do preprocessing only. Instead of the normal preprocessing output, generate on

the preprocessing output file a list of dependency lines suitable for input to the
UNIX make program. Note that when implicit inclusion of templates is enabled,
the output may indicate false (but safe) dependencies unless --no_pre-
proc_only is also used.

--error_output efile Redirect the output that would normally go to the error output file (i.e., diagnos-
tic messages) to the file efile. This option is useful on systems where output redi-
rection of files is not well supported. If used, this option should probably be
specified first in the command line, since otherwise any command-line errors for
options preceding the --error_output would be written to stderr before
redirection.

--list lfile
-Llfile Generate raw listing information in the file lfile. This information is likely to be

used to generate a formatted listing. The raw listing file contains raw source
lines, information on transitions into and out of include files, and diagnostics
generated by the front end. Each line of the listing file begins with a key charac-
ter that identifies the type of line, as follows:

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 9

N: a normal line of source; the rest of the line is the text of the line.

X: the expanded form of a normal line of source; the rest of the line is the
text of the line. This line appears following the N line, and only if the
line contains non-trivial modifications (comments are considered
trivial modifications; macro expansions, line splices, and trigraphs are
considered non-trivial modifications). Comments are replaced by a
single space in the expanded-form line.

S: a line of source skipped by an #if or the like; the rest of the line is
text. Note that the #else, #elif, or #endif that ends a skip is
marked with an N.

L: an indication of a change in source position. The line has a format
similar to the # line-identifying directive output by cpp, that is to say

L line-number "file-name" key
where key is 1 for entry into an include file, 2 for exit from an include
file, and omitted otherwise. The first line in the raw listing file is
always an L line identifying the primary input file. L lines are also
output for #line directives (key is omitted). L lines indicate the
source position of the following source line in the raw listing file.

R, W, E, or C:
an indication of a diagnostic (R for remark, W for warning, E for error,
and C for catastrophic error). The line has the form

S "file-name" line-number column-number message-text
where S is R, W, E, or C, as explained above. Errors at the end of file
indicate the last line of the primary source file and a column number
of zero. Command-line errors are catastrophes with an empty file
name ("") and a line and column number of zero. Internal errors are
catastrophes with position information as usual, and message-text
beginning with (internal error). When a diagnostic displays a
list (e.g., all the contending routines when there is ambiguity on an
overloaded call), the initial diagnostic line is followed by one or more
lines with the same overall format (code letter, file name, line number,
column number, and message text), but in which the code letter is the
lower case version of the code letter in the initial line. The source
position in such lines is the same as that in the corresponding initial
line.

--list_macros Do preprocessing only. Instead of the normal preprocessing output, generate on
the preprocessing output file a list of all the macros in effect after processing the
source file, including predefined and command-line macros along with their defi-
nitions.

--no_line_commands
-P Do preprocessing only. Write preprocessed text to the preprocessing output file,

with comments removed and without line control information.

--old_line_commands When generating source output (e.g., with the C-generating back end), put out
#line directives in the form used by the Reiser cpp, i.e., “# nnn” instead of
“#line nnn”.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 10

--output ofile
-o ofile Specify the output file of the compilation, i.e., the preprocessing or intermediate

language output file.

--xref xfile
-Xxfile Generate cross-reference information in the file xfile. For each reference to an

identifier in the source program, a line of the form
symbol-id name ref-code file-name line-number column-number

is written, where ref-code is D for definition, d for declaration (that is, a declara-
tion that is not a definition), T for a full template instantiation, t for a partial tem-
plate instantiation (i.e., an instantiation of the template declaration, but not of its
definition), M for modification, A for address taken, U for used, C for changed
(but actually meaning “used and modified in a single operation,” such as an
increment), R for any other kind of reference, or E for an error in which the kind
of reference is indeterminate. symbol-id is a unique decimal number for the
symbol. The fields of the above line are separated by tab characters.

1.1.3 Preprocessor Options

The following options control the behavior of the preprocessor.

--comments
-C Keep comments in the preprocessed output. This should be specified after either

--preprocess or --no_line_commands; it does not of itself request pre-
processing output.

--define_macro name [(parm-list)] [= def]
-D name [(parm-list)] [= def]

Define macro name as def. If “= def ” is omitted, define name as 1. Function-
style macros can be defined by appending a macro parameter list to name.

--import_dir dir-name Specify the directory in which the files to be included by #import directives
are to be found. These files must have been generated previously by the Micro-
soft compiler. This option is valid only in Microsoft mode.

--incl_suffixes str Specifies the list of suffixes to be used when searching for an include file whose
name was specified without a suffix. The argument is a colon-separated list of
suffixes (e.g., “h:hpp::”). If a null suffix is to be allowed, it must be included in
the suffix list. The default is specified by the configuation flag DEFAULT_IN-
CLUDE_FILE_SUFFIX_LIST.

--include_directory dir
--sys_include dir
-Idir Add dir to the list of directories searched for #includes. See section 1.7,

“Finding Include Files,” on page 37.

--modules_directory dir
Add dir to the list of directories searched for module files when processing an
import directive. The current working directory is automatically added to the
start of this list. If the EDG_MODULES_PATH environment variable is set, that
path is added to the end of the list. See section 1.8, “Finding Module Files,” on
page 38.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 11

--ms_header_unit header_path=module_file
Add module_file to the header unit map, corresponding to header_path. When
importing a header unit, if the resolved path to the header matches header_path,
then module_file is used as the match. See section 1.8, “Finding Module Files,”
on page 38.

--ms_header_unit_angle header_path=module_file
--ms_header_unit_quote header_path=module_file

Add module_file, corresponding to header_path, to a header unit map selected by
the form in which header_path is written, <...> and "...", respectively.
Unlike --ms_header_unit, header_path is not resolved immediately but
will be resolved on demand. (See section 1.7, “Finding Include Files,” on
page 37.) If the resolved path to the header for the header unit matches the
resolved header_path, module_file is used as the match. See section 1.8, “Find-
ing Module Files,” on page 38.

--ms_mod_file_map [module_name=] file
If module_name is omitted, file will be examined to determine if the module it
represents matches the module named in the import directive. Otherwise, an
import of module_name will resolve to file without examining its contents. See
section 1.8, “Finding Module Files,” on page 38.

--ms_mod_interface
--no_ms_mod_interface Enable or disable treating every module unit declaration as if it had been

exported (i.e., as an interface unit). The option has no effect on non-module
translation units.

--ms_translate_include
--no_ms_translate_include

Enable or disable the automatic translation of #include directives into
import directives when a header has a mapping to a module file in a header unit
map (see --ms_header_unit, --ms_header_unit_angle, and --
ms_header_unit_quote regarding how such mappings are specified.)

--old_style_preprocessing
Forces pcc style preprocessing when compiling in ANSI C or C++ mode. This
may be used when compiling an ANSI C or C++ program on a system in which
the system header files require pcc style preprocessing.

--preinclude_macros filename
--preinclude filename Include the source code of the indicated file at the beginning of the compilation.

This can be used to establish standard macro definitions, etc. The file name is
searched for in the directories on the include search list. When the prein-
clude_macros variant is used, only the preprocessing directives from the file
are evaluated. All of the actual code is discarded. The effect of this option is that
any macro definitions from the specified file will be in effect when the primary
source file is compiled. All of the macro-only files are processed before any of
the normal preincludes. Within each group, the files are processed in the order in
which they were specified.

--preprocess
-E Do preprocessing only. Write preprocessed text to the preprocessing output file,

with comments removed and with line control information.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 12

--no_preproc_only May be used in conjunction with the options that normally cause the front end to
do preprocessing only (e.g., --preprocess, etc.) to specify that a full compi-
lation should be done (not just preprocessing). When used with the implicit inclu-
sion option, this makes it possible to generate a preprocessed output file that
includes any implicitly included files.

--stdc_zero_in_system_headers
--no_stdc_zero_in_system_headers

Enable or disable special processing of the __STDC__ macro when referenced
from system headers. When this feature is enabled, __STDC__ has the value
zero in system header files (files found in directories specified using the --sys-
_include option) and one otherwise. This feature is provided to emulate the
behavior of gcc in certain configurations. The default is specified by
DEFAULT_STDC_ZERO_IN_SYSTEM_HEADERS. If the flag is not TRUE
by default, the GNU mode default is specified by the DEFAULT_GNU_STD-
C_ZERO_IN_SYSTEM_HEADERS macro.

--trace_includes
-H Output a list of the names of files #included to the error output file. The

source file is compiled normally (i.e., it is not just preprocessed) unless another
option that causes preprocessing only is specified.

--undefine_macro name
-Uname Remove any initial definition of the macro name. --undefine_macro

options are processed after all --define_macro options in the command line
have been processed.

--check_concatenations
--no_check_concatenations

Specifies whether or not the front end will issue a diagnostic if a concatenation
operator ## in a macro expansion fails to produce a valid preprocessor token as
required by the C and C++ Standards.

--no_token_separators_in_pp_output
Used in connection with options that generate preprocessing output, suppresses
the extra spaces the front end inserts in the text of macro expansions to ensure
that tokens that should not be combined remain separate tokens. This can be
used to prevent the insertion of extraneous spaces when the front end is used as a
preprocessor for text that is not C or C++.

1.1.4 Diagnostic Options

The following options control when or how diagnostics are emitted.

--add_match_notes
--no_add_match_notes

Enable or disable diagnostic notes that provide further details for a failure to
match candidates in an overload set.

--brief_diagnostics
--no_brief_diagnostics

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 13

Enable or disable a mode in which a shorter form of the diagnostic output is used.
When enabled, the original source line is not displayed and the error message text
is not wrapped when too long to fit on a single line.

--colors
--no_colors Enable or disable colorization of diagnostic messages. The default behavior is

controlled by the DEFAULT_ENABLE_COLORIZED_DIAGNOSTICS configu-
ration macro (which defaults to TRUE). Colorized diagnostics are disabled when
not writing to a terminal, and are also disabled when the NOCOLOR environment
variable is set, the TERM environment variable is unset, or the EDG_COLORS
environment variable is set to an empty string.

--context_limit number
Set the context limit to number. The context limit is the maximum number of
template instantiation context entries to be displayed as part of a diagnostic mes-
sage. The default is specified by the DEFAULT_CONTEXT_LIMIT macro. If the
number of context entries exceeds the limit, the first and last N context entries are
displayed, where N is half of the context limit. A value of zero is used to indicate
that there is no limit.

--diag_suppress tag, tag,...
--diag_remark tag, tag,...
--diag_warning tag, tag,...
--diag_error tag, tag,... Override the normal error severity of the specified diagnostic messages. The

message(s) may be specified using a mnemonic error tag or using an error
number. The error tag names and error numbers are listed in the Error Messages
appendix.

--diag_once tag, tag,... Causes the specified diagnostic to be issued only once as a warning or remark.
The message(s) may be specified using a mnemonic error tag or using an error
number. The error tag names and error numbers are listed in the Error Messages
appendix.

--display_error_number
--no_display_error_number

Enable or disable the display of an error message number in any diagnostic mes-
sages that are generated. The option may be used to determine the error number
to be used when overriding the severity of a diagnostic message. The configura-
tion macro DEFAULT_DISPLAY_ERROR_NUMBER specifies the default
behavior.

--error_limit number
-e number Set the error limit to number. The front end will abandon compilation after this

number of errors (remarks and warnings are not counted toward the limit). By
default, the limit is 100.

--for_init_diff_warning
--no_for_init_diff_warning

Enable or disable a warning that is issued when programs compiled under the
new for-init scoping rules would have had different behavior under the old rules.
The diagnostic is only put out when the new rules are used. DEFAULT_WARN-
ING_ON_FOR_INIT_DIFFERENCE specifies the default behavior. This
option is valid only in C++ mode.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 14

--lossy_conversion_warning
--no_lossy_conversion_warning

Enable or disable a warning that is issued when conversion of an arithmetic value
to a different type might result in lost data because the target type cannot repre-
sent all the values of the source type.

--macro_positions_in_diagnostics
--no_macro_positions_in_diagnostics

Enable or disable display of extra information for diagnostics that refer to text in
macro expansions. These options may only be used if FULLY_RE-
SOLVED_MACRO_POSITIONS is TRUE. The additional information includes
the original source line from which the text identified by the message was copied
into the macro expansion (i.e., a macro definition or an argument in the top-level
macro invocation), as well as the chain of macro invocations that led to the
expanded text designated by the diagnostic (if MACRO_INVOCA-
TION_TREE_IN_IL is TRUE). The default value is given by
DEFAULT_MACRO_POSITIONS_IN_DIAGNOSTICS.

--module_import_diagnostics
--no_module_import_diagnostics

Enable or disable the issuing of diagnostics while importing entities from module
files.

--output_mode mode Set the front end diagnostic output mode to mode. Valid modes are text for tra-
ditional command line diagnostic output and sarif for SARIF (Static Analysis
Results Interchange Format; see https://www.sarif.info) output.

--promote_warnings
-W Issue all warnings as if they were discretionary errors.

--remarks
-r Issue remarks, which are diagnostic messages even milder than warnings.

--report_gnu_extensions
Warn about the use of certain GNU extensions outside system header files. Only
valid in GNU C or C++ mode.

--template_typedefs_in_diagnostics
--no_template_typedefs_in_diagnostics

Enable or disable the replacement of typedefs declared in template classes with
their underlying type. Diagnostic messages are often more useful when such
typedefs are replaced. The default behavior is specified by the DEFAULT_TEM-
PLATE_TYPEDEFS_IN_DIAGNOSTICS macro.

--timing
-# Generate compilation timing information. This option causes the compiler to

display the amount of CPU time and elapsed time used by each phase of the com-
pilation and a total for the entire compilation.

--no_use_before_set_warnings
-j Suppress warnings on local automatic variables that are used before their values

are set. The front end’s algorithm for detecting such uses is conservative and is
likely to miss some cases that an optimizer with sophisticated flow analysis could

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 15

detect; thus, an implementation might choose to suppress the warnings from the
front end when optimization has been requested but to permit them when the
optimizer is not being run.

--no_warnings
-w Suppress warnings. Errors are still issued.

--wrap_diagnostics
--no_wrap_diagnostics Enable or disable a mode in which the error message text is not wrapped when

too long to fit on a single line.

1.1.5 Individual Language Features

The following options enable or disable specific language syntax. (Options that affect the meaning of existing con-
structs are listed in Section 1.1.6 on page 21.)

--alternative_tokens
--no_alternative_tokens

Enable or disable recognition of alternative tokens. This controls recognition of
the digraph tokens in C and C++, and controls recognition of the operator key-
words (e.g., and, bitand, etc.) in C++. The default behavior is specified by the
DEFAULT_ALTERNATIVE_TOKENS_ALLOWED configuration constant.

--array_new_and_delete
--no_array_new_and_delete

Enable or disable support for array new and delete. The default behavior is speci-
fied by the configuration constant DEFAULT_AR-
RAY_NEW_AND_DELETE_ENABLED. This option is valid only in C++ mode.
The front end can be configured to define a preprocessing variable when array
new and delete are enabled. This preprocessing variable may then be used by the
standard header files to decide whether to include the declarations for the array
new/delete functions.

--auto_storage
--no_auto_storage Enable or disable the traditional meaning of auto as a storage class specifier

(only valid in C++ mode). (If disabled, then auto must be a type specifier.). The
default behavior is specified by the DEFAULT_AUTO_STORAGE_-
CLASS_SPECIFIER_ENABLED configuration constant.

--auto_type
--no_auto_type Enable or disable auto as a type specifier where the actual type is deduced from

an initializer (only valid in C++ mode). This is a C++11 feature. If enabled, the
traditional meaning of auto as a storage class specifier is disabled (which
matches C++11), unless the option --auto_storage is also supplied. The
default behavior is specified by the DEFAULT_AUTO_TYPE_SPECIFI-
ER_ENABLED configuration constant.

--bool
--no_bool Enable or disable recognition of bool. The default value is supplied by

DEFAULT_BOOL_IS_KEYWORD. This option is valid only in C++ mode. The
front end can be configured to define a preprocessing variable when bool is rec-
ognized. This preprocessing variable may then be used by header files to deter-
mine whether a typedef should be supplied to define bool.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 16

--c23_typeof
--no_c23_typeof Enable or disable support for the C23 typeof and typeof_unqual opera-

tors, regardless of the current C language level. This option is valid only in C
mode.

--c++11_sfinae
--no_c++11_sfinae Enable or disable template deduction in the style dictated by the C++11 standard,

i.e., where general expressions are allowed in deduction contexts and they
undergo the full usual semantic checking. This type of deduction is necessary to
get the full power of the decltype feature in return types. (“SFINAE” refers to
the initials of the phrase “Substitution Failure Is Not An Error”, which is the
guiding principle for template deduction, and by extension a name for the process
of deduction.)

--c++11_sfinae_ignore_access
--no_c++11_sfinae_ignore_access

When new-style SFINAE is enabled, these options control whether or not access
errors cause deduction failures. The positive option indicates that access check-
ing should not be done during template deduction, and therefore that access
errors cannot cause a deduction failure; this was the status quo ante when the
new-style SFINAE rules were proposed. The “no” version of the option indi-
cates that access checking should be done during template deduction, and there-
fore that access errors cause a deduction failure; this is the revised direction
chosen by the standards committee.

--char8_t
--no_char8_t

Enable or disable support for the char8_t keyword and type (a C++20 feature).
Enabled by default in C++20 mode.

--compound_literals
--no_compound_literals

Enable or disable support for “compound literals” (a C99 feature).

--concepts
--no_concepts

Enable or disable support for concepts (a C++20 feature).

--delegating_constructors
--no_delegating_constructors

Enable or disable delegating constructors (a C++11 feature).

--deprecated_string_conv
--no_deprecated_string_conv

Enable or disable the deprecated conversion from a string literal to char *.
Meaningful only when string literals are const.

--designators
--no_designators Enable or disable support for designators (a C99 feature). These options are not

available in C++ mode.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 17

--digit_separators
--no_digit_separators Enable or disable support for digit separators (a C++14 feature). When this

feature is enabled, an apostrophe can appear between the digits of a numeric
literal and is ignored, e.g., 123’456’789.

--extended_designators
--no_extended_designators

Enable or disable support for “extended designators,” an extension accepted only
in C mode to emulate the behavior of certain other C compilers when it comes to
designators in aggregate initializers.

--dollar
-$ Accept dollar signs in identifiers. The default value of this option is specified in a

configuration file.

--exceptions
--no_exceptions
-x Enable or disable support for exception handling. -x is equivalent to --excep-

tions. The default behavior is specified by the configuration constant
DEFAULT_EXCEPTIONS_ENABLED. This option is valid only in C++ mode.

--exc_spec_in_func_type
--no_exc_spec_in_func_type

Enable or disable exceptions being part of a function type (enabled by default in
C++17 modes and disabled by default otherwise).

--explicit
--no_explicit Enable or disable support for the explicit specifier on constructor declara-

tions. The default behavior is specified by the configuration constant
DEFAULT_EXPLICIT_KEYWORD_ENABLED. This option is valid only in C++
mode.

--export
--no_export Enable or disable recognition of exported templates. The default value is sup-

plied by DEFAULT_EXPORT_TEMPLATE_ALLOWED. This option is valid only
in C++ mode. This option requires that dependent name processing be done, and
cannot be used with implicit inclusion of template definitions.

--extern_inline
--no_extern_inline Enable or disable support for inline functions with external linkage in C++.

When inline functions are allowed to have external linkage (as required by the
standard), then extern and inline are compatible specifiers on a nonmember
function declaration; the default linkage when inline appears alone is external
(that is, inline means extern inline on nonmember functions); and an
inline member function takes on the linkage of its class (which is usually
external). However, when inline functions have only internal linkage (as
specified in the ARM), then extern and inline are incompatible; the default
linkage when inline appears alone is internal (that is, inline means
static inline on nonmember functions); and inline member functions
have internal linkage no matter what the linkage of their class.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 18

--fixed_point
--no_fixed_point Enable or disable support for Embedded C fixed-point types. (Not available in

C++ modes.)

--lambdas
--no_lambdas Enable or disable support for C++11 lambdas. (Only available in C++ modes.)

--long_long Permit the use of long long in strict mode in dialects in which it is non-stan-
dard.

--modules
--no_modules Enable or disable support for modules. Modules are currently experimental and

will be enabled by default in future releases in the applicable modes. The front
end does not currently generate modules files of its own and can only consume
module files produced by Microsoft Visual Studio version 16.8. This support is
incomplete and compatibility will change in future releases.

--multibyte_chars
--no_multibyte_chars Enable or disable processing for multibyte character sequences in comments,

string literals, and character constants. The default behavior is specified by
DEFAULT_MULTIBYTE_CHARS_IN_SOURCE_ALLOWED. Multibyte encod-
ings are used for character sets like the Japanese SJIS.

--named_address_spaces
--no_named_address_spaces

Enable or disable support for Embedded C named address space qualifiers. (Not
available in C++ modes.)

--named_registers
--no_named_registers Enable or disable support for Embedded C named-register storage class specifi-

ers. (Not available in C++ modes.)

--namespaces
--no_namespaces Enable or disable support for namespaces. The default behavior is specified by

the configuration constant DEFAULT_NAMESPACES_ENABLED. This option is
valid only in C++ mode.

--nonstd_using_decl
--no_nonstd_using_decl

In C++, controls whether a nonmember using-declaration that specifies an
unqualified name is allowed.

--nullptr
--no_nullptr Enable or disable support for the C++11 nullptr keyword. (Only valid in C++

mode.)

--old_specializations
--no_old_specializations

Enable or disable acceptance of old-style template specializations (i.e., special-
izations that do not use the template<> syntax). Default behavior is specified
by DEFAULT_OLD_SPECIALIZATIONS_ALLOWED. This option is valid only
in C++ mode.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 19

--relaxed_abstract_checking
--no_relaxed_abstract_checking

Enable or disable a mode in which checking for the use abstract class types as
function parameter or return types is performed only when the function is defined
or called. Traditionally this checking has been performed on non-defining func-
tion declarations as well, and this behavior can be preserved via the second
option.

--restrict
--no_restrict Enable or disable recognition of the restrict keyword.

--rtti
--no_rtti Enable or disable support for RTTI (runtime type information) features: dynam-

ic_cast, typeid. The default behavior is specified by the configuration con-
stant DEFAULT_RTTI_ENABLED. This option is valid only in C++ mode.

--rvalue_ctor_is_copy_ctor
--rvalue_ctor_is_not_copy_ctor

Determines whether an rvalue (or “move”) constructor is treated as a copy con-
structor (the default) or not. If rvalue constructors are treated as copy construc-
tors, a user-declared rvalue constructor will inhibit the implicit generation of a
traditional copy constructor.

--rvalue_refs
--no_rvalue_refs Enable or disable support for rvalue references. (Only valid in C++ mode.)

--sun_linker_scope
--no_sun_linker_scope

Enable or disable support for Sun CC 5.5 link scope specifiers (__global,
__symbolic, and __hidden). The default setting is supplied by
DEFAULT_SUN_LINKER_SCOPE_ALLOWED.

--thread_local_storage
--no_thread_local_storage

Enable or disable the C++11 thread_local specifier (and if so configured,
the __thread specifier) to indicate that variables should be stored in thread-
local storage. By default, the __thread specifier is enabled in Sun mode and in
GNU mode when gnu_version >= 30400.

--trigraphs
--no_trigraphs

Enable or disable recognition of trigraphs. The default behavior is specified by
the DEFAULT_TRIGRAPHS_ALLOWED configuration constant.

--typename
--no_typename Enable or disable recognition of typename. The default value is supplied by

DEFAULT_TYPENAME_ENABLED. This option is valid only in C++ mode.

--type_traits_helpers
--no_type_traits_helpers

Enable or disable support for type traits helpers (like __is_union and
__has_virtual_destructor; intended to ease the implementation of
ISO/IEC TR 19768). Only valid in C++. Type traits helpers are enabled in all
C++ modes by default, except in GNU and Sun C++ modes.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 20

--uliterals
--no_uliterals Enable or disable recognition of U-literals (string literals of the forms U"..."

and u"...", and character literals of the forms U'...' and u'...'). In C++
mode, this also enables or disables the C++11 char16_t and char32_t key-
words.

--unrestricted_unions
--no_unrestricted_unions

Enable or disable C++11-style “unrestricted unions” (i.e., unions with data
members that have nontrivial initialization and/or destruction semantics). This
option can currently not be enabled in Microsoft mode.

--user_defined_literals
--no_user_defined_literals

Enable or disable C++11-style “user-defined literals,” i.e., literals with a suffix
designating an operator function that is to be called to produce the value of the
literal, e.g., 12.34_km, which calls operator ""_km(12.34).

--utf8_char_literals
--no_utf8_char_literals

Enable or disable C++17-style UTF-8 character literals (e.g., u8’a’). Enabled
by default in C++17 mode as well as when microsoft_version >= 1900.

--variadic_macros
--no_variadic_macros Enable or disable support for variadic macros (a C99 feature that is also available

in C++ mode).

--extended_variadic_macros
--no_extended_variadic_macros

Enable or disable support for “extended variadic macros,” an extension that emu-
lates the behavior of certain other C compilers when it comes to variadic macros.

--variadic_templates
--no_variadic_templates

Enable or disable support for “variadic templates,” a C++11 feature that allows
declaration of templates with a variable number of arguments. The default value
is dependent on the major language mode and on DEFAULT_VARIADIC_TEM-
PLATES_ENABLED. This option is valid only in C++ modes.

--vla
--no_vla Enable or disable support for “variable length arrays,” a C99 feature and an

extension in some other modes that allows the declaration and use of arrays of
automatic storage duration with dimensions that are fixed at run time. These
options are available only if VLA_ALLOWED is configured to TRUE.

--wchar_t_keyword
--no_wchar_t_keyword Enable or disable recognition of wchar_t as a keyword. The default value is

supplied by DEFAULT_WCHAR_T_IS_KEYWORD. This option is valid only in
C++ mode. The front end can be configured to define a preprocessing variable
when wchar_t is recognized as a keyword. This preprocessing variable may
then be used by the standard header files to determine whether a typedef should
be supplied to define wchar_t.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 21

1.1.6 Alternative Language Behaviors

The following options affect the meaning of various language constructs.

--aligned_new
--no_aligned_new

Enable or disable calling special allocation and deallocation functions for types
with more stringent alignment requirements than the fundamental types (enabled
by default in C++17 modes and disabled otherwise).

--arg_dep_lookup
--no_arg_dep_lookup

In C++, controls whether argument dependent lookup of unqualified function
names is performed

--base_assign_op_is_default
--no_base_assign_op_is_default

Enable or disable the anachronism of accepting a copy assignment operator that
has an input parameter that is a reference to a base class as a default copy assign-
ment operator for the derived class. This option is enabled by default in cfront
compatibility mode.

--class_name_injection
--no_class_name_injection

In C++, controls whether the name of a class is injected into the scope of the class
(as required by the standard) or is not injected (as was true in earlier versions of
the C++ language).

--const_string_literals
--no_const_string_literals

Control whether C++ string literals and wide string literals are const (as required
by the standard) or non-const (as was true in earlier versions of the C++ lan-
guage).

--default_calling_convention calling-convention
The calling convention that should be assumed for functions that are declared
without an explicit calling convention. This option may only be used if MICRO-
SOFT_EXTENSIONS_ALLOWED is TRUE. calling-convention must be one of
__cdecl, __fastcall, __stdcall, and __thiscall.

--default_nocommon_tentative_definitions
--default_common_tentative_definitions

Control whether tentative definitions are placed in “common” storage. These
options are only available in configurations with GNU_EXTENSIONS_AL-
LOWED set to TRUE. The default can be overridden for specific variables with
the GNU attributes “common” and “nocommon”.

--defer_parse_function_templates
--no_defer_parse_function_templates

Enable or disable deferral of prototype instantiations until the first actual instanti-
ation of a function. This is used to permit the compilation of programs that
contain definitions of unusable function templates. It is enabled by default in g++

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 22

mode when gnu_version is >= 30400 (but not when using the C++-generating
back end).

--dep_name
--no_dep_name Enable or disable dependent name processing; i.e., the special lookup of names

used in templates as required by the C++ standard. The default value is supplied
by DEFAULT_DEPENDENT_NAME_PROCESSING. This option is valid only in
C++ mode and --dep_name cannot be combined with --no_parse_tem-
plates.

--distinct_template_signatures
--no_distinct_template_signatures

Control whether the signatures for template functions can match those for non-
template functions when the functions appear in different compilation units.
(This option is available only on versions that do name mangling on the names of
external entities.) The default is --distinct_template_signatures,
under which a normal function cannot be used to satisfy the need for a template
instance; e.g., a function “void f(int)” could not be used to satisfy the need
for an instantiation of a template “void f(T)” with T set to int. --
no_distinct_template_signatures provides the older language
behavior, under which a non-template function can match a template function.
Also controls whether function templates may have template parameters that are
not used in the function signature of the function template.

--enum_overloading
--no_enum_overloading Enable or disable support for using operator functions to overload builtin opera-

tions on enum-typed operands.

--far_data_pointers
--near_data_pointers
--far_code_pointers
--near_code_pointers Set the default size for pointers when support for near and far is enabled (e.g.,

in Microsoft 16-bit mode). Ignored in other modes.

--friend_injection
--no_friend_injection

In C++, controls whether the name of a class or function that is declared only in
friend declarations is visible when using the normal lookup mechanisms. When
friend names are injected, they are visible to such lookups. When friend names
are not injected (as required by the standard), function names are visible only
when using argument-dependent lookup, and class names are never visible.

--func_prototype_tags
--no_func_prototype_tags

in C, controls whether tag types first declared in a function prototype belong to
the function prototype scope (standard C behavior) or to a surrounding scope
(default Microsoft C behavior).

--gcc89_inlining Use the GNU C89 semantics of inline in C99 mode. (Not valid in C++
modes.)

--gen_move_operations
--no_gen_move_operations

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 23

Enable or disable the generation of move constructors and move assignment
operators according to standard C++11 rules.

--guiding_decls
--no_guiding_decls Enable or disable recognition of “guiding declarations” of template functions. A

guiding declaration is a function declaration that matches an instance of a func-
tion template but has no explicit definition (since its definition derives from the
function template). For example:

template <class T> void f(T) { ... }
void f(int);

When regarded as a guiding declaration, f(int) is an instance of the template;
otherwise, it is an independent function for which a definition must be supplied.
If --no_guiding_decls is combined with --old_specializations,
a specialization of a non-member template function is not recognized — it is
treated as a definition of an independent function. Default behavior is specified
by DEFAULT_GUIDING_DECLS_ALLOWED. This option is valid only in C++
mode.

--ignore_std Enable a g++ compatibility feature that makes the std namespace a synonym
for the global namespace.

--implicit_extern_c_type_conversion
--no_implicit_extern_c_type_conversion

Enable or disable an extension to permit implicit type conversion in C++
between a pointer to an extern "C" function and a pointer to an extern
"C++" function. This extension is allowed in environments where C and C++
functions share the same calling conventions: IMPL_CONV_BE-
TWEEN_C_AND_CPP_FUNCTION_PTRS_POSSIBLE must be set for it to be
available. (It is useful for cfront compatibility when DEFAULT_C_AND_CPP_-
FUNCTION_TYPES_ARE_DISTINCT is TRUE — in standard C++ the linkage
specification is part of the function type, with the consequence that otherwise
identical function types, one declared extern "C" and the other declared
extern "C++", are viewed as distinct.)

--implicit_noexcept
--no_implicit_noexcept

Enable or disable the implicit generation of exception specifications for user-
declared destructors and deallocation functions in C++11 mode. (In strict C++11
mode, it is enabled by default, whereas in other C++11 modes it is disabled by
default.)

--implicit_typename
--no_implicit_typename

Enable or disable implicit determination, from context, whether a template
parameter dependent name is a type or nontype. The default value is supplied by
DEFAULT_IMPLICIT_TYPENAME_ENABLED. This option is valid only in
C++ mode.

--late_tiebreaker
--early_tiebreaker Select the way that tie-breakers (e.g., cv-qualifier differences) apply in overload

resolution. In “early” tie-breaker processing, the tie-breakers are considered at
the same time as other measures of the goodness of the match of an argument
value and the corresponding parameter type (this is the standard approach). In

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 24

“late” tiebreaker processing, tie-breakers are ignored during the initial compari-
son, and considered only if two functions are otherwise equally good on all argu-
ments; the tie-breakers can then be used to choose one function over another.

--long_lifetime_temps
--short_lifetime_temps

Select the lifetime for temporaries: “short” means to end of full expression;
“long” means to the earliest of end of scope, end of switch clause, or the next
label. “short” is standard C++, and “long” is what cfront uses (the cfront compat-
ibility modes select “long” by default).

--long_preserving_rules
--no_long_preserving_rules

Enable or disable the K&R usual arithmetic conversion rules with respect to
long. This means the rules of K&R I, Appendix A, 6.6, not the rules used by the
pcc compiler. The significant difference is in the handling of “long op
unsigned int” when int and long are the same size. The ANSI/ISO/pcc
rules say the result is unsigned long, but K&R I says the result is long
(unsigned long did not exist in K&R I).

--max_depth_constexpr_call=n
--max_cost_constexpr_call=n

Specify the maximum depth of recursion or the maximum “cost” for folding a
top-level constexpr call (function or constructor). In C++11 modes, the
“cost” is the number of calls expanded from a single top-level call. In C++14
modes, the “cost” is a combination of the number of calls interpreted and the
number of loop iterations performed during the interpretation of a top-level call.

--ms_internal_partition
--no_ms_internal_partition

Disable or enable, respectively, behavior in which a module partition implemen-
tation unit implicitly imports a module partition interface unit of the same name.
The latter option is the default in Microsoft emulation mode; --ms_inter-
nal_partition emulates the Microsoft Visual Studio /internalParti-
tion command-line option. All other modes default to disabling this behavior.

--ms_rvalue_cast
--no_ms_rvalue_cast

Explicitly disable or enable treating a cast of an lvalue to its own type as that
same lvalue. (--ms_rvalue_cast corresponds to standard behavior, but
Microsoft compilers traditionally behaved otherwise.) Implies Microsoft mode.

--ms_strict_ternary
--no_ms_strict_ternary

Enable or disable strict standard-conforming behavior of the conditional ternary
operator (?:) in Microsoft mode. It is disabled by default in Microsoft mode,
unless Microsoft permissive mode is disabled (see --no_ms_permissive).
Implies Microsoft mode.

--nonconst_ref_anachronism
--no_nonconst_ref_anachronism

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 25

Enable or disable the anachronism of allowing a reference to nonconst to bind to
a class rvalue of the right type. This anachronism is also enabled by the --
anachronisms option and the cfront-compatibility options.

--nonstd_anonymous_unions
--no_nonstd_anonymous_unions

Enable or disable extensions to the C++ anonymous union feature (including of
anonymous “structs” or “classes”). This option can also be used in C modes.
Enabled by default in GNU and Microsoft modes, and disabled by default in
strict modes.

--nonstd_default_arg_deduction
--no_nonstd_default_arg_deduction

Controls whether default arguments are retained as part of deduced function
types. The C++ standard requires that default arguments not be part of deduced
function types.

--nonstd_instantiation_lookup
--no_nonstd_instantiation_lookup

Controls whether the lookup of names during template instantiation should,
instead of the normal lookup rules, use rules that were part of the C++98 working
paper for some time during the development of the standard. In this mode, names
are looked up in both the namespace of the template definition and in the name-
space in which a template entity was first referenced in a way that would require
an instantiation.

--nonstd_qualifier_deduction
--no_nonstd_qualifier_deduction

Controls whether nonstandard template argument deduction should be performed
in the qualifier portion of a qualified name. With this feature enabled, a template
argument for the template parameter T can de deduced in contexts like A<T>::B
or T::B. The standard deduction mechanism treats these as nondeduced contexts
that use the values of template parameters that were either explicitly specified or
deduced elsewhere.

--old_id_chars
--no_old_id_chars Controls whether the set of extended characters accepted in C++ identifiers

should be those specified by pre-C++23 C++ standards or by Unicode Standard
Annex #44. The latter is the default in all C++ modes, because the C++ Standard
Committee adopted the Unicode specification of identifier characters both for
C++23 and retroactively for earlier standards.

--old_for_init
--new_for_init Control the scope of a declaration in a for-init-statement. The old

(cfront-compatible) scoping rules mean the declaration is in the scope to which
the for statement itself belongs; the new (standard-conforming) rules in effect
wrap the entire for statement in its own implicitly generated scope. The default
behavior is specified by configuration constant DEFAULT_USE_NONSTAN-
DARD_FOR_INIT_SCOPE. This option is valid only in C++ mode.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 26

--pack_alignment n Set the default alignment for packing classes and structs to n, a power-of-2 value
within the range defined by TARG_MINIMUM_PACK_ALIGNMENT and
TARG_MAXIMUM_PACK_ALIGNMENT. The argument n is the default
maximum alignment for nonstatic data members; it can be overridden by a
#pragma pack directive. This option is allowed only when USER_CON-
TROL_OF_STRUCT_PACKING is TRUE.

--parse_templates
--no_parse_templates

Enable or disable the parsing of nonclass templates in their generic form (i.e.,
even if they are not really instantiated). It is done by default if dependent name
processing is enabled. This option is valid only in C++ mode.

--preserve_lvalues_with_same_type_casts
--no_preserve_lvalues_with_same_type_casts

Explicitly enable or disable treating a cast of an lvalue to its own type as that
same lvalue (whereas both C and C++ specify that such casts result in rvalues).
Enabled by default in Microsoft and Sun modes.

--short_enums
--no_short_enums Enable or disable a mode in which all enumeration types are ‘‘packed’’ (meaning

that the underlying type of the enumeration is chosen to be the smallest integer
that will accommodate the enumerator constants). Only valid in GNU C compat-
ibility mode.

--signed_bit_fields
Make bit fields declared with a plain integer type (e.g., short or int, but not
signed short or unsigned int) signed.

--signed_chars
-s Make plain char signed. The default signedness for char is selected at the time

of installation of the front end (information on this appears in a later section of
this document). When plain char is signed, the macro __SIGNED_CHARS__
is defined by the front end.

--special_subscript_cost
--no_special_subscript_cost

Enable or disable a special nonstandard weighting of the conversion to the inte-
gral operand of the [] operator in overload resolution. This is a compatibility
feature that may be useful with some existing code. The special cost is enabled
by default in cfront 3.0 mode. With this feature enabled, the following code com-
piles without error:

struct A {
 A();
 operator int *();
 int operator[](unsigned);
};
void main() {
 A a;
 a[0]; // Ambiguous, but allowed with this option
 // operator[] is chosen
}

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 27

As of July 1996, the above is again acceptable, if ptrdiff_t is configured as
long. Using a parameter of type ptrdiff_t (instead of unsigned int) is
recommended for portability.

--no_stdarg_builtin Disable special treatment of the <stdarg.h> header. When enabled, the
<stdarg.h> header is treated as a built-in, and references to its macros
(va_start et al) are passed through as such in generated C or C++ code. The
default value is supplied by DEFAULT_PASS_STDARG_REFERENCES_TO_-
GENERATED_CODE. This option cannot be used when the feature is disabled by
default.

--unsigned_bit_fields
Make bit fields declared with a plain integer type (e.g., short or int, but not
signed short or unsigned int) unsigned.

--unsigned_chars
-u Make plain char unsigned. The default signedness for char is selected at the

time of installation of the front end (information on this appears in a later section
of this document).

--using_std
--no_using_std Enable or disable implicit use of the std namespace when standard header files

are included. The default behavior is specified by the configuration constant
DEFAULT_IMPLICIT_USING_STD. This option is valid only in C++ mode.
Note that this does not do the equivalent of putting a “using namespace
std;” in the program to allow old programs to be compiled with new header
files; it has a special and localized meaning related to the EDG versions of
certain header files, and is unlikely to be of much use to end-users of the Front
End.

1.1.7 Template Instantiation Options

--auto_instantiation
--no_auto_instantiation
-T Enable or disable automatic instantiation of templates. The -T option is equiva-

lent to --auto_instantiation. The default behavior is specified by the
configuration flag DEFAULT_AUTOMATIC_INSTANTIATION_MODE. See the
section of this chapter on template instantiation. This option is valid only in C++
mode.

--definition_list_file file_name
This option specifies the name of the template definition list file passed between
the front end and the prelinker. This file is a temporary file and does not remain
after the compilation is complete. This option is supplied for use by the driver
program that invokes the front end and is not intended to be used by end-users.

--exported_template_file file-name
This option specifies the name to be used for the exported template file used for
processing of exported templates. This option is supplied for use by the driver
program that invokes the front end and is not intended to be used by end-users.

--ii_file file-name This option specifies the name to be used for the template instantiation request
file used in automatic instantiation mode. This option is supplied for use by the

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 28

driver program that invokes the front end and is not intended to be used by end-
users.

--implicit_include
--no_implicit_include
-B Enable or disable implicit inclusion of source files as a method of finding defini-

tions of template entities to be instantiated. -B is equivalent to --implic-
it_include. The default behavior is specified by the configuration flag
DEFAULT_IMPLICIT_TEMPLATE_INCLUSION_MODE. See the section of
this chapter on template instantiation. This option is valid only in C++ mode.

--instantiate mode
-tmode Control instantiation of external template entities. External template entities are

external (i.e., noninline and nonstatic) template functions, variables, and template
static data members. The instantiation mode determines the template entities for
which code should be generated based on the template definition):

none Instantiate no template entities. This is the default.

used Instantiate only the template entities that are used in this compilation.

all Instantiate all template entities whether or not they are used.

local Instantiate only the template entities that are used in this compilation,
and force those entities to be local to this compilation.

See the section of this chapter on template instantiation. This option is valid only
in C++ mode.

--instantiation_dir dir-name
When --one_instantiation_per_object is used, this option can be
used to specify a directory into which the generated object files (or C files, if the
C-generating back end if being used) should be put. The eccp script always
specifies this option when invoking the front end, with the default of Tem-
plate.dir if the option is not specified by the user.

--one_instantiation_per_object
Put out each template instantiation in this compilation (function, variable, or
static data member) in a separate object file. The primary object file contains
everything else in the compilation, i.e., everything that isn’t an instantiation.
Having each instantiation in a separate object file is very useful when creating
libraries, because it allows the user of the library to pull in only the instantiations
that are needed. That can be essential if two different libraries include some of
the same instantiations. This option is valid only in C++ mode, and only if the
configuration constant ONE_INSTANTIATION_PER_OBJECT is TRUE.

--pending_instantiations=n
Specifies the maximum number of instantiations of a given template that may be
in process of being instantiated at a given time. This is used to detect runaway
recursive instantiations. If n is zero, there is no limit. The default is specified by
the configuration parameter DEFAULT_MAX_PENDING_INSTANTIATIONS.

--suppress_instantiation_flags

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 29

When automatic instantiation is being used, this option suppresses the generation
of the special symbols used by the prelinker to do automatic instantiation pro-
cessing. This option is for use by the driver and prelinker and should not be used
directly by users. This option is used by to implement the driver option that
removes the instantiation flags from object files once the prelinking step has
completed.

--template_directory dir
Specifies a directory name to be placed on the exported template search path. The
directories are used to find the definitions of exported templates and are searched
in the order in which they are specified on the command-line. The current direc-
tory is always the first entry on the search path.

--template_info_file file-name
This option specifies the name to be used for the template instantiation informa-
tion file used in automatic instantiation mode. This option is supplied for use by
the driver program that invokes the front end and is not intended to be used by
end-users.

1.1.8 Code Generation Options

The following options control the IL produced, the C-generating back end, or the C++-generating back end.

--no_code_gen
-n Do syntax-checking only, i.e., do not run the back end.

--force_vtbl Force definition of virtual function tables in cases where the heuristic used by the
front end to decide on definition of virtual function tables provides no guidance.
See --suppress_vtbl. This option is valid only in C++ mode.

--no_il_lowering
-N On versions that include IL lowering and that write an intermediate language file,

suppress both IL lowering and the back end, and write an unlowered (i.e., C++
rather than C) IL file. Probably not of interest to end users.

--inline_statement_limit size
When inlining is enabled, sets the maximum size (in number of lowered state-
ments) for a routine to be inlinable. A value of zero allows an inlined routine to
be any size. Only available when MINIMAL_INLINING is configured to be
TRUE.

--inlining
--no_inlining Enable or disable minimal inlining of function calls. These options are available

only when MINIMAL_INLINING is configured to be TRUE. The default is to
do inlining when the C-generating back end is used.

--keep_restrict_in_signatures
--no_keep_restrict_in_signatures

In most modern configurations, top-level parameter type qualifiers are removed
from function types. In such configurations, this option overrides or preserves
that behavior for the restrict qualifier; i.e., when the option is enabled, the
mangled name of a function will reflect the presence of top-level restrict
parameter type qualifiers.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 30

--module_init name1,name2,...
-iname1,name2,... When generating C output for testing (see c_gen_be in an Appendix), when

compiling in C mode, and if the current compilation contains a main program,
force calling of the file-scope initialization routines in the indicated compiled
units. This is needed only when there are file-scope union initializations in trans-
lation units that do not contain a main program. A message will be issued during
compilation of such units, indicating the need for the --module_init option.
All necessary names must be specified in one --module_init option; a
second --module_init will overwrite the original list, not add to it. This
option is not needed when object code is generated by a back end other than the
C-generating back end, nor is it needed when the C-generating back end is con-
figured to generate ANSI C. This option is not needed in C++ mode, because
C++ has a language mechanism for getting initialization code executed at
program start-up.

--msvc_target_version version-number
When using the C-generating back end to produce code that is to be compiled
with the Microsoft compiler, this specifies the version of the Microsoft compiler
being used (e.g., 1300 is used for MSVC version 7). This option is supplied for
use by the driver program that invokes the front end and is not intended to be
used by end-users.

--remove_unneeded_entities
--no_remove_unneeded_entities

Enable or disable an optimization to prune the IL tree of types, variables, rou-
tines, and related IL entries that are not “really needed.” (Something may be ref-
erenced but unneeded if is referenced only by something that is itself unneeded;
certain entities, such as global variables and routines defined in the translation
unit, are always considered to be needed.) The positive form of the option is
available only when MAINTAIN_NEEDED_FLAGS is TRUE.

--suppress_vtbl
-V Suppress definition of virtual function tables in cases where the heuristic used by

the front end to decide on definition of virtual function tables provides no guid-
ance. The virtual function table for a class is defined in a compilation if the com-
pilation contains a definition of the first non-inline non-pure virtual function of
the class. For classes that contain no such function, the default behavior is to
define the virtual function table (but to define it as a local static entity). The
option --suppress_vtbl suppresses the definition of the virtual function
tables for such classes, and --force_vtbl forces the definition of the virtual
function table for such classes. --force_vtbl differs from the default behav-
ior in that it does not force the definition to be local. This option is valid only in
C++ mode.

--target target-config-name
For configurations that support multiple targets, specifies that the target configu-
ration named target-config-name should be used for the compilation. If no --
target option is specified, the default target configuration (which may or may
not be the legacy configuration) is used.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 31

1.1.9 Precompiled Header Options

The following options control how precompiled header files are generated and used.

--pch Automatically use and/or create a precompiled header file — for details, see the
“Precompiled Headers” section in this chapter. If --use_pch or --cre-
ate_pch (manual PCH mode) appears on the command line following this
option, its effect is erased.

--create_pch file-name If other conditions are satisfied (see the “Precompiled Headers” section), create a
precompiled header file with the specified name. If --pch (automatic PCH
mode) or --use_pch appears on the command line following this option, its
effect is erased.

--use_pch file-name Use a precompiled header file of the specified name as part of the current compi-
lation. If --pch (automatic PCH mode) or --create_pch appears on the
command line following this option, its effect is erased.

--pch_dir directory-name The directory in which to search for and/or create a precompiled header file. This
option may be used with automatic PCH mode (--pch) or with manual PCH
mode (--create_pch or --use_pch).

--pch_messages
--no_pch_messages Enable or disable the display of a message indicating that a precompiled header

file was created or used in the current compilation.

--pch_verbose In automatic PCH mode, for each precompiled header file that cannot be used for
the current compilation, a message is displayed giving the reason that the file
cannot be used.

--pch_mem size The number of 1024-byte units of preallocated memory in which to save precom-
piled-header state (only if USE_MMAP_FOR_MEMORY_REGIONS is FALSE).

1.1.10 C++/CLI Options

--mscorlib_file_name file-name
Use the given assembly metadata file instead of mscorlib.dll to import system
types.

--preusing file-name Import the given assembly metadata file prior to processing the input source (but
after importing mscorlib.dll or the file specified with the --mscor-
lib_file_name option).

--using_directory directory-name
Add the given directory to the search path used when searching for assembly
metadata files.

--using_framework_directory
--no_using_framework_directory

Do or do not implicitly include the installation directory of the Microsoft .NET
runtime in the search path used when searching for assembly metadata files. The
default is to include that directory.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 32

--vcmeta_directory directory-name
Search for the vcmeta.dll file in the specified directory. If omitted,
vcmeta.dll is searched for in the same directory as the module that contains
the front end.

1.1.11 Front End Debugging Options

--dbn
--dbname=n
-dn
-dname=n Set the debug output level in the front end, which controls the output of flow-

tracing and similar information to the debug output file (stderr). --dbn sets
the debug level to n (in the range 1–5) for the entire execution of the compiler
(higher values generate more voluminous debugging output). One can control the
debug output more precisely by specifying a routine name and the debug level
desired upon entry to that routine, as in --dbname=n. Regardless of the previ-
ous setting of the debug level, it will be changed to the indicated value on entry to
the indicated routine; on exit, it will be restored to its former value. One can also
use += or -= in place of = in that option to increase or decrease the debug level
relative to its current value. The former value is also restored on exit from the
routine in those cases. Ordinarily, a message is written to debug output whenever
the debug level is changed (i.e., both on entry and exit in the above cases). If that
is not desirable, a ! (implying “not”) can be appended to the level number in the
command-line option, to indicate that the level-change messages should not be
produced for that request. Several routine names can be specified, and/or several
requests can be made, by separating them with commas, as in the following:

--db fe_init,fe_wrapup+=2,get_token=3!

-d-name1,-name2,... Enable the named “debug flags”, which will enable debug output associated with
the flag. For example, -d-dump_layout produces output related to the class
type layout process.

-d#name1,#name2,... Disable the named “debug flags”.

--db_name=name Enable debug output for source entities with the given name. Not all debug
output takes this option into account; i.e., even with this option some debug
output not associated with the given name may be produced. When simultane-
ously compiling multiple translation units, entities in all translation units are con-
sidered by default. The given name can be restricted to entities in the primary
translation units by preceding it with [] or to entities in a secondary translation
unit by preceding it with [file] where file is the name of the secondary source
file. For example,

-d-trans_corresp --db_name=[x.cpp]A::f
will output debugging information about cross-translation-unit correspondences
for a member A::f declared in a secondary translation unit defined by source
file x.cpp.

1.1 Command Line

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 33

1.1.12 Miscellaneous Options

--version
-v Display the version number of the front end, and the Edison Design Group copy-

right.

--building_runtime Used to indicate that the EDG runtime library is being compiled. This causes
additional macros to be predefined that are used to pass target configuration
information from the front end to the runtime.

--edg_base_dir The name of the directory in which to find files needed by the front end at execu-
tion time. This option is supplied for use by the driver program that invokes the
front end and is not intended to be used by end-users.

--dump_command_options
Display the complete set of --name command-line options recognized by the
front end in a format that is compatible with, e.g., the bash shell’s complete
command to allow the shell’s completion facility to be used with front end
options.

--dump_configuration
Display the complete set of configuration macros with which the front end was
built. The output (to the error output file) can be captured and used as the con-
tents of the defines.h file to recreate that configuration. This option is avail-
able only in executables built with DEBUG set to TRUE.

--dump_legacy_as_target target-config-name

Displays the legacy configuration in such a manner that the configuration can be
used to specify a new target configuration named target-config-name. For cus-
tomers who have multiple versions of the front end (each configured for a spe-
cific target), this option can be used to generate a separate target configuration
for each of the legacy configurations, and the output combined to form a single
configuration where the target can be specified at run-time (via the --target
option). This option is available only in executables built with DEBUG set to
TRUE. The output is directed to the error output file.

--incognito
--no_incognito Enable or disable the suppression of implicitly-defined EDG-specific macros

such as __EDG__ and __EDG_VERSION__. Suppressing these macros facili-
tates compilation of code that incorrectly configures itself via conditional compi-
lation when it detects that the compiler is based on the EDG front end. The
default behavior of the front end is determined by the value of the configuration
macro DEFAULT_INCOGNITO.

--il_display Displays the IL in a human-readable form. This is the same output that would be
generated by writing the IL to a file and displaying it with the edgcpdisp util-
ity. The IL that is displayed is lowered IL (if the configuration does lowering)
unless the --no_il_lowering command-line option is also specified.

--mmap_address address Specify the fixed address to be used in calls to mmap. Valid addresses are spe-
cific to the host operating system (and architecture), and may change from invo-
cation to invocation (depending, say on which shared libraries are loaded). The
address chosen should be aligned to the page size of the host. The use of a fixed

1.2 Environment Variables

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 34

address for mmap is useful in cases where pre-compiled header files are used (to
ensure that the same address space is available from one invocation of the front
end to another). This option is available only in executables built with USE_-
FIXED_ADDRESS_FOR_MMAP set to TRUE.

--check_unicode_security
--no_check_unicode_security

Enable or disable checking of comments, string literals, and identifiers for
Unicode patterns that could be used to disguise malicious source code by making
it appear innocuous; suspicious patterns are reported as warnings. Checking is
only applicable to UTF-encoded Unicode source and header files. These options
are available only in executables built with UNICODE_VULNERABILITY_-
CHECKING_SUPPORTED set to TRUE.

--module_import_diagnostics
--no_module_import_diagnostics

Enable or disable the issuing of diagnostic messages during the import of entities
from a module. The option can be used to reduce verbosity and condense diag-
nostics that do not relate to the source file being compiled. The default setting is
specified by the DEFAULT_MODULE_IMPORT_DIAG_ENABLED configura-
tion macro.

1.2 Environment Variables

The environment variable USR_INCLUDE can be set to a directory to be used instead of /usr/include on the
standard include file search list. (Of course, this has no effect if the front end has been configured to have an empty
“standard list” of include files.)

When the front end is built with the __MICROSOFT_OS__ flag set, the environment variable TMP is used to specify
the directory to be used for temporary files. If TMP is not set, and when __MICROSOFT_OS__ is not set, the envi-
ronment variable TMPDIR is used to indicate a directory to be used for temporary files. If TMPDIR is not set, a
default temporary directory (often, /usr/tmp) is used. (Note: at the present time, the front end only uses temporary
files when generating an intermediate language file for immediate use by a back end called in the same program, and
in the C-generating back end.)

1.3 Diagnostic Messages

Diagnostic messages have an associated severity, as follows:

• Catastrophic errors indicate problems of such severity that the compilation cannot continue. For example:
command-line errors, internal errors, and missing include files. If multiple source files are being compiled, any
source files after the current one will not be compiled.

• Errors indicate violations of the syntax or semantic rules of the C or C++ language. Compilation continues, but
object code is not generated.

• Warnings indicate something valid but questionable. Compilation continues and object code is generated (if no
errors are detected).

1.3 Diagnostic Messages

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 35

• Remarks indicate something that is valid and probably intended, but which a careful programmer may want to
check. These diagnostics are not issued by default. Compilation continues and object code is generated (if no
errors are detected).

Diagnostics are written to the error output file with a form like the following:

"test.c", line 5: a break statement may only be used within a loop
 or switch
 break;
 ^

Diagnostics are normally written to stderr, but the front end can be configured to use stdout by setting the
DIRECT_ERROR_OUTPUT_TO_STDOUT configuration macro. When this flag is set, messages are directed to
stdout, except when doing preprocessing only. Errors during command-line processing are always directed to
stderr.

Diagnostic messages can optionally be “colorized”. Colorization is enabled when the colorize_diagnostics
global variable is TRUE. To support colorization of diagnostics, diagnostics are annotated when the anno-
tate_diagnostics global variable is TRUE. In that case, annotation sequences are inserted into the diagnostic
message itself to identify pieces of the diagnostic that might later be highlighted in some fashion. These two character
annotations take the form of an “escape” character (DIAG_ANNOTATION_INDICATOR) followed by an a_diag-
nostic_annotation_kind enumerator. When colorization is enabled, format_output_line replaces the
annotations with Select Graphic Rendition (SGR) codes that, on most terminal emulators, can be used to highlight
text in various ways. The SGR codes used for colorization default to a string specified by DEFAULT_EDG_COLORS
which can be overridden by the EDG_COLORS environment variable (if set). The string consists of a colon-separated
list of elements, where each element specifies a string that maps to an a_diagnostic_annotation_kind
value followed by an “=” and the SGR string to use when highlighting text of that kind. For example:

"error=01;31:warning=01;35:note=01;36:locus=01:quote=01:range1=32"

A customer can use the annotations in a diagnostic to display the annotated pieces in any fashion they desire (e.g.,
when a GUI is available).

Note that the message identifies the file and line involved, and that the source line itself (with position indicated by
the ^) follows the message. If there are several diagnostics in one source line, each diagnostic will have the form
above, with the result that the text of the source line will be displayed several times, with an appropriate position each
time.

Long messages are wrapped to additional lines when necessary.

A configuration flag controls whether or not the string “error:” appears, i.e., the front end can be configured so that
the severity string is omitted when the severity is “error”.

A command line option may be used to request a shorter form of the diagnostic output in which the original source
line is not displayed and the error message text is not wrapped when too long to fit on a single line.

A command line option may be used to request that the error number be included in the diagnostic message. When
displayed, the error number also indicates whether the error may have its severity overridden on the command line. If
the severity may be overridden, the error number will include the suffix “-D” (for “discretionary”); otherwise no
suffix will be present.

"Test_name.c", line 7: error #64-D: declaration does not declare anything
 struct {};
 ^

1.4 Termination Messages

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 36

"Test_name.c", line 9: error #77: this declaration has no storage class or
 type specifier
 xxxxx;
 ^

Because an error is determined to be discretionary based on the error severity associated with a specific context, a
given error may be discretionary in some cases and not in others.

For some messages, a list of entities is useful; they are listed following the initial error message:

"test.c", line 4: error: more than one instance of overloaded function "f"
 matches the argument list:
 function "f(int)"
 function "f(float)"
 argument types are: (double)
 f(1.5);
 ^

In some cases, some additional context information is provided; specifically, such context information is useful when
the front end issues a diagnostic while doing a template instantiation or while generating a constructor, destructor, or
assignment operator function. For example:

"test.c", line 7: error: "A::A()" is inaccessible
 B x;
 ^
 detected during implicit generation of "B::B()" at line 7

 Without the context information, it is very hard to figure out what the error refers to.

If the front end is configured with FULLY_RESOLVED_MACRO_POSITIONS (and, optionally, MACRO_INVOCA-
TION_TREE_IN_IL) set to TRUE, messages referring to text occurring inside a macro expansion may provide
additional information. This additional information gives the source location from which the text was copied into the
macro expansion (i.e., from a macro definition or one of the arguments in the top-level macro invocation), as well as
possibly the chain of macro invocations leading to the expanded text to which the diagnostic refers. If the front end is
configured to permit the display of this information, it can also be enabled or disabled by the command-line option -
-[no_]macro_positions_in_diagnostics. The information is presented in a form like the following:

"test.c", line 1: error: identifier "val" is undefined
 #define incr(x) (x)+=val
 ^
 in expansion of macro "incr" at "test.c", line 2,
 in expansion of macro "next_val" at "test.c", line 4:
 return next_val(i);
 ^

1.4 Termination Messages

When the front end is installed without the USING_DRIVER option (see information on configuration later in this
document), it writes sign-off messages to the error output file. For example, one of the following forms of message

n errors detected in the compilation of "ifile".
1 catastrophic error detected in the compilation of "ifile".
n errors and 1 catastrophic error detected in the compilation of "ifile".

is written to indicate the detection of errors in the compilation. No message is written if no errors were detected. The
following message

1.5 Response to Signals

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 37

Error limit reached.
is written when the count of errors reaches the error limit (see the -e option, above); compilation is then terminated.
The message

Compilation terminated.
is written at the end of a compilation that was prematurely terminated because of a catastrophic error. The message

Compilation aborted.
is written at the end of a compilation that was prematurely terminated because of an internal error. Such an error indi-
cates an internal problem in the compiler and should be reported to those responsible for its maintenance.

1.5 Response to Signals

The signals SIGINT (caused by a user interrupt, like ^C) and SIGTERM (caused by a kill command) are trapped
by the front end and cause abnormal termination.

1.6 Exit Status

On completion, the front end returns with a code indicating the highest-severity diagnostic detected: 4 if there was a
catastrophic error, 2 if there were any errors, or 0 if there were any warnings or remarks or if there were no diagnos-
tics of any kind.

If multiple source files are compiled, the exit status indicates the highest-severity diagnostic detected in the entire
compilation.

1.7 Finding Include Files

A file name specified in a #include directive is searched for in a set of directories specified by command-line
options and environment variables. If the file name specified does not include a suffix, a set of suffixes is used when
searching for the file.

Files whose names are not absolute pathnames and that are enclosed in "..." will be searched for in the following
directories, in the order listed:

1. The directory containing the current input file (the primary source file or the file containing the #include);1

2. any directories specified in --include_directory options (in the order in which they were listed on the
command line);

3. any directories on the standard list (this list is selected at the time of installation of the front end; often, it is just
the one directory /usr/include or a similar system include directory for C++).

For file names enclosed in <...>, only the directories that are specified using the --include_directory
option and those on the standard list are searched. If the directory name is specified as “-”, e.g., “-I-”, the option
indicates the point in the list of --include_directory options at which the search for file names enclosed in
<...> should begin. That is, the search for <...> names should only consider directories named in --

1.However, if STACK_REFERENCED_INCLUDE_DIRECTORIES is TRUE, the directories of all the source input files currently
in use are searched, in reverse order of #include nesting.

1.8 Finding Module Files

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 38

include_directory options following the -I-, and the directories of item 3 above. -I- also removes the
directory containing the current input file (item 1 above) from the search path for file names enclosed in "...".

An include directory specified with the --sys_include option is considered a “system” include directory. Warn-
ings are suppressed when processing files found in system include directories. If a default include directory has been
specified using the USR_INCLUDE configuration flag or environment variable, it is considered a system include
directory.

If the file name has no suffix it will be searched for by appending each of a set of include file suffixes. When search-
ing in a given directory all of the suffixes are tried in that directory before moving on to the next search directory. The
default set of suffixes is specified by the DEFAULT_INCLUDE_FILE_SUFFIX_LIST configuration parameter.
The default can be overridden using the --incl_suffixes command-line option. A null file suffix cannot be
used unless it is present in the suffix list (i.e., the front end will always attempt to add a suffix from the suffix list
when the file name has no suffix).

1.8 Finding Module Files

An import directive can specify either a module unit or a header unit, and the process of finding these differ. A
header unit import names the header identically to the equivalent #include directive (a file name enclosed in
<...> or "..."), while a module unit is imported by its name and not the name of the file containing the module
unit.

An import directive that specifies a header unit first finds the named header using the process for finding
#include files. See section 1.7, “Finding Include Files,” on page 37. If the header is found, the corresponding
module file is found by the following search, in the listed order:

1. Using the direct mappings provided by --ms_header_unit.

2. Using the unresolved mappings provided by --ms_header_unit_angle (if the header file name is specified
via <...>) or by --ms_header_unit_quote (if the header file name is specified via "..."). If a match is
found here, that match is added to the map for --ms_header_unit.

An import directive that specifies a module unit will search for the module file, in the order listed:

1. Any direct mappings from that module name to a module file as specified by --ms_mod_file_map

2. Any files listed without a direct map by --ms_mod_file_map, examining those files to determine if the
module each represents matches the module being imported

3. Files in the directory containing the current input file (the primary source file or the file containing the import)

4. Files in any directories specified by --modules_directory (in the order in which they were listed on the
command line)

5. Files in the directory specified by the EDG_MODULES_PATH environment variable, if it's set.

1.9 C++ Dialect Accepted

In strict C++ mode, the front end accepts the complete C++ language as defined by the ISO/IEC 14882:2003 stan-
dard, including export templates (if the front end’s configuration allows them). In nonstrict C++ mode (which is the
default in common configurations), a small set of features—particularly, export templates—are not supported, but
some minor extensions commonly available on other compilers are accepted.

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 39

The front end accepts the complete C++17 language as defined by the ISO/IEC 14882:2017 standard (enabled
through the command-line option --c++17). The front end also fully supports the earlier C++14, C++11, and (as
noted above) C++98/03 versions of the language. The front end supports most of the features of the C++20 language
as defined by the 14882:2020 standard (enabled through the command-line option --c++20). The C++20 features
that are not accepted yet are described below.

Extensive compatibility modes are also available for the Microsoft Visual C++ compilers, the GNU C++ (“GCC”)
compilers, and the clang C++ compiler. A more basic Sun C++ compatibility mode is also implemented. Only one
emulation mode may be active at a time (but --ms_extensions or --ms_compatibility may be enabled in
non-Microsoft emulation modes).

The front end also has a cfront compatibility mode, which duplicates a number of “features” and bugs of cfront 2.1
and 3.0.x. Complete compatibility is not guaranteed or intended—the mode is there to allow programmers who have
unwittingly used cfront features to continue to compile their existing code. In particular, if a program gets an error
when compiled by cfront, the EDG front end may produce a different error or no error at all.

Command-line options are available to enable and disable anachronisms, to control strict standard-conformance
checking, and to adjust the severity of certain diagnostics.

1.9.1 C++20 Implementation Status

Most of the new features and changes in the C++20 standard are accepted by the front end. Details about the specific
changes (e.g., the first version of the front end to support the feature, and the standard committee papers that intro-
duced the feature) can be found on the EDG website. See http://www.edg.com/c/features.

The following C++20 features are not yet supported (our web site has links with further details):

• Concepts are supported, but some of the most recent changes to the feature are not yet supported:

• Partial ordering of rewritten operator candidates resulting from constrained templates

• Clarify declaration matching and partial ordering requiring substitution into constraints

• When are constexpr member functions defined? (core issue 1581). This is not yet implemented because of
concerns about potential code breakage.

• Modules. (There is partial support for importing Microsoft modules. See the release notes for more information.)

1.9.2 C++23 Implementation Status

Some of the new features and changes in the draft C++23 standard are accepted by the front end. Details about the
specific changes (e.g., the first version of the front end to support the feature, and the standard committee papers that
introduced the feature) can be found on the EDG website. See http://www.edg.com/c/features.

1.9.3 Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled:

• overload is allowed in function declarations. It is accepted and ignored.

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 40

• Definitions are not required for static data members that can be initialized using default initialization. The anach-
ronism does not apply to static data members of template classes; they must always be defined.

• The number of elements in an array may be specified in an array delete operation. The value is ignored.

• A single operator++() and operator--() function can be used to overload both prefix and postfix opera-
tions.

• The base class name may be omitted in a base class initializer if there is only one immediate base class.

• Assignment to this in constructors and destructors is allowed. This is allowed only if anachronisms are enabled
and the “assignment to this” configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to a function.

• A nested class name may be used as a nonnested class name provided no other class of that name has been
declared. The anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different type. A temporary is created, it is
initialized from the (converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the class type or a derived class thereof.
No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and may participate in function overloading as though
it were prototyped. Default argument promotion is not applied to parameter types of such functions when the
check for compatibility is done, so that the following declares the overloading of two functions named f:

int f(int);
int f(x) char x; { return x; }

It will be noted that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

• When --nonconst_ref_anachronism is enabled, a reference to a nonconst class can be bound to a class
rvalue of the same type or a derived type thereof.

struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
};
main () {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
}

1.9.4 “Default” C++ Mode

The following extensions are accepted default C++ mode. Most of these are also accepted in any other C++ mode that
does not diagnose strict ANSI violations as errors (exceptions are explicitly noted).

• A friend declaration for a class may omit the class keyword:

class B;
class A {
 friend B; // Should be "friend class B"
};

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 41

• Constants of scalar type may be defined within classes (this is an old form; the modern form uses an initialized
static data member):

class A {
 const int size = 10;
 int a[size];
};

• In the declaration of a class member, a qualified name may be used:

struct A {
 int A::f(); // Should be int f();
};

• If ALLOW_NONSTANDARD_ANONYMOUS_UNIONS is TRUE, an extension is supported to allow an anonymous
union to be introduced into a containing class by a typedef name — it needn’t be declared directly, as with a
true anonymous union. For example:

typedef union {
 int i, j;
} U; // U identifies a reusable anonymous union.
class A {
 U; // Okay -- references to A::i and A::j are allowed.
};

In addition, the extension also permits “anonymous classes” and “anonymous structs,” as long as they have no
C++ features (e.g., no static data members or member functions and no nonpublic members) and have no nested
types other than other anonymous classes, structs, or unions. For instance,

struct A {
 struct {
 int i, j;
 }; // Okay -- references to A::i and A::j are allowed.
};

• If recognition of the restrict keyword is enabled, the C99 restrict feature is supported in a form extended
for C++, which allows restrict as a type qualifier for reference and pointer-to-member types and for nonstatic
member functions. The set of C++ extensions is described in J16/92-0057.

• If IMPL_CONV_BETWEEN_C_AND_CPP_FUNCTION_PTRS_POSSIBLE is TRUE, implicit type conversion
between a pointer to an extern "C" function and a pointer to an extern "C++" function is permitted.
Here’s an example:

extern "C" void f(); // f’s type has extern "C" linkage
void (*pf)() // pf points to an extern "C++" function
 = &f; // error unless implicit conversion is allowed

This extension is allowed in environments where C and C++ functions share the same calling conventions
(though it is pointless unless DEFAULT_C_AND_CPP_FUNCTION_TYPES_ARE_DISTINCT is TRUE).
When DEFAULT_IMPL_CONV_BETWEEN_C_AND_CPP_FUNCTION_PTRS_ALLOWED is set, it is enabled
by default; it can also be enabled in cfront-compatibility mode or with command-line option --implicit_ex-
tern_c_type_conversion.

• A “?” operator whose second and third operands are string literals or wide string literals can be implicitly con-
verted to “char *” or “wchar_t *”. (Recall that in C++ string literals are const. There is a deprecated
implicit conversion that allows conversion of a string literal to “char *”, dropping the const. That conversion,
however, applies only to simple string literals. Allowing it for the result of a “?” operation is an extension.)

char *p = x ? "abc" : "def";

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 42

• Default arguments may be specified for function parameters other than those of a top-level function declaration
(e.g., they are accepted on typedef declarations and on pointer-to-function and pointer-to-member-function
declarations).

• Nonstatic local variables of an enclosing function can be referenced in a non-evaluated expression (e.g., a
sizeof expression) inside a local class. A warning is issued.

• In default C++ mode (but not other non-C++11 modes), the friend class syntax is extended to allow nonclass
types as well as class types expressed through a typedef or without an elaborated type name. For example:

typedef struct S ST;
class C {
 friend S; // Okay (requires S to be in scope).
 friend ST; // Okay (same as "friend S;").
 friend int; // Okay (no effect).
 friend S const; // Error: cv-qualifiers cannot appear directly.
};

• In default C++ mode, mixed string literal concatenations are accepted. (This is a feature carried over from C99
and also available in GNU modes. It is not enabled in other non-C++11 modes.)

wchar_t *str = "a" L"b"; // Okay, same as L"ab".

• In default C++ mode, variadic macros are accepted. (This is a feature carried over from C99 and also available in
GNU modes. It is not by default enabled in other non-C++11 modes.)

• In default C++ mode, empty macro arguments are accepted (a feature carried over from C99).

• A trailing comma in the definition of an enumeration type is silently accepted (a feature carried over from C99):

enum E { e, };

Except where noted, all of the extensions described in the C dialect section are also allowed in C++ mode.

1.9.5 GNU C++ Mode

The front end can be built to accept GNU extensions. In GNU C++ mode, a large number of extensions and bugs are
closely emulated. This feature enables the front end to compile many large and complex projects that were developed
using the GNU tool chain; this includes major open-source projects.

Support for this emulation is ongoing: New GNU C++ features are added as needed, with priority given to features
used in system headers.

Because the GNU compiler frequently changes behavior between releases, the front end provides an option (--
gnu_version) to specify a specific version of GCC to emulate. Generally speaking, features and bugs are emu-
lated to exactly match each known version of GCC, but occasionally the emulation is approximate and in such cases
the front end is often a little more permissive than GCC on the principle that it is more important to accept source that
GCC accepts than to diagnose every case that GCC diagnoses. The front end does not, however, attempt to emulate
every GCC command-line option; in particular, GCC options to be extra-permissive are not emulated (however, the
severity of specific error diagnostics can sometimes be decreased to accept constructs that are not by-default allowed
in GNU emulation mode).

Some GNU features are only emulated when specific configuration options are enabled. For example, support for
complex floating-point types is only available when the front end is configured to support C99 extensions.

A few GCC extensions there are likely not going to be supported in the foreseeable future:

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 43

• The forward declaration of function parameters (so they can participate in variable-length array parameters).

• GNU-style complex integral types (complex floating-point types are supported)

• Nested functions

• Local structs with variable-length array fields. Such fields are treated (with a warning) as zero-length arrays in
GNU C mode, which is a useful approximation in some circumstances, but not generally equivalent to the GNU
feature.

1.9.6 Microsoft C++ Mode

The front end also extensively emulates the Microsoft Visual C++ compilers. As is the case with GNU modes, an
option (--microsoft_version) is available to select a specific version of Microsoft’s compiler to emulate.

Although Microsoft C++ and C modes generally emulate both extensions/features and bugs, the emulation of a
certain class of bugs (considered more severe) can be controlled separately (using the --no_microsoft_bugs/-
-microsoft_bugs options).

Microsoft C++ mode can be combined with certain other language options to enable a larger superset of the language
accepted by the Microsoft compiler.

In addition to full Microsoft emulation mode, two subsets of Microsoft emulation are available: --ms_exten-
sions, and --ms_compatibility, corresponding to clang’s -fms-extensions and -fms-compati-
bility command-line options, respectively. These command-line options allow a certain degree of Microsoft
emulation while the primary emulation mode is something else (e.g., --clang).

Support for Microsoft C++ emulation is ongoing: New features are added as needed, with priority given to features
used in system headers.

1.9.7 Microsoft C++/CLI Mode

The front end implements the language extensions known as “C++/CLI” that simplifies writing C++-like programs
for Microsoft’s “.NET” environment. These extensions are formally described through the ECMA-372 standard, but
where the Microsoft compiler deviates from the standard, the front end follows the Microsoft compiler rather than the
standard.

Almost all C++/CLI features are implemented in the front end. This includes various managed class kinds and the
special members (e.g. properties) that they can contain, delegates, handles and tracking references, gcnew, generics,
importing of assemblies, hide-by-sig lookup rules, string literal rules, and so forth. A notable exception is Microsoft-
style attributes (delimited by square brackets): The front end can parse them, but does not currently implement their
semantics.

An earlier attempt at integrating C++ and .NET was known as “Managed C++”: The front end does not support those
earlier Microsoft compiler features (which have since been deprecated by Microsoft).

1.9.8 Extensions Accepted in Sun Compatibility Mode

The front end provides a “Sun Compatibility” mode. This mode automatically selects a set of command-line options
that provides the greatest compatibility with the Sun CC 5.x compiler. It also enables certain extensions that are
accepted by the Sun compiler. Note that this mode is provided to enable the front end to compile code such as com-
monly used Sun header files, and is not intended to provide complete compatibility with the Sun compiler.

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 44

Sun compatibility mode currently corresponds to the following combination of options:

--no_guiding_decls
--extern_inline
--nonstd_using_decl

These settings can explicitly be overridden using more command-line options.

The following extensions are accepted in Sun compatibility mode:

• The Sun-specific link scope specifiers __global, __symbolic, and __hidden can be recognized. In modes
that recognize these keywords, the pragmas “#pragma disable_ldscope” and “#pragma enable_ld-
scope” can be used to temporarily allow these keywords as normal identifiers. For example:

__global int i; // Accepted in some Sun modes.
#pragma disable_ldscope
int __global; // Okay: Keyword (temporarily) deactivated.
#pragma enable_ldscope
struct __global; // Error: __global is a keyword.

• The __thread specifier can be used to indicate that a variable should be placed in thread-local storage.

• In Sun mode, a non-tag from one scope hides a tag from another scope when both are visible as a result of a using-
directive.

template <class T> struct B { };
namespace N {
 typedef B<char> A;
}
using namespace N;
class A;
typedef A C; // Sun mode uses typedef N::A instead of ambiguity

• A reference to an undeclared function template is accepted when the reference appears in the definition of a class
template.

template <class T> struct A {
 friend void f<>(T&); // Accepted in Sun mode
};

• When a friend class is declared with an unqualified name, the lookup of that name is not restricted to the nearest
enclosing namespace scope.

 struct S;
 namespace N {
 class C {
 friend struct S; // ::S in Sun and Microsoft modes
 }; // (N::S otherwise)
 }

• The typename keyword is ignored in most contexts.

// The Sun compiler does recognize typename in a template parameter list
template <typename T> class C {
 // Illegal uses of typename that are accepted by the Sun compiler
 typename T t;
 typename typename T typename typename x;
};

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 45

• A default argument may be specified in the definition of a member function of a class template declared outside of
the class.

template <class T> struct A {
void f(int);

};
template <class T> void A<T>::f(int = 0) { }

• A template argument list may appear following a constructor name in constructor definition that appears outside
of the class definition:

template <class T> struct A {
 A();
};
template <class T> A<T>::A<T>(){}

• Template parameters are (incorrectly) visible in class template specializations and specializations of members of
class templates.

template <class T> struct A {
 void f();
};
template <> struct A<int> {
 T t; // T should not be visible here
};
template <> void A<char>::f() {
 T t; // T should not be visible here
}

• The explicit instantiation of a class does not cause the instantiation of its inline members.

template <class T> struct A {
 void f() { g(); } // Not instantiated in Sun mode
};
template class A<int>;

• An extern inline function that is referenced but not defined is permitted (with a warning).

• Default arguments are retained as part of deduced function types.

• When searching for a header file specified using the <...> syntax, the front end searches for the specified
header file name and also for a version with the suffix .SUNWCCh appended (e.g., stddef.h.SUNWCCh).

• The std namespace is predeclared.

• A reference to a nonstatic data member may be written without an object (not even an implicit this->) inside a
sizeof:

typedef struct _X {
 char A[512];
} X;
static unsigned int foo() {
 return sizeof(X::A);
}

• A storage class may appear in a declaration that also has a “direct” linkage specification — e.g.,

extern "C" static void f();
is treated as equivalent to

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 46

extern "C" { static void f(); }

1.9.9 Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using default initialization. The anach-
ronism does not apply to static data members of template classes; they must always be defined.

• The number of elements in an array may be specified in an array delete operation. The value is ignored.

• A single operator++() and operator--() function can be used to overload both prefix and postfix opera-
tions.

• The base class name may be omitted in a base class initializer if there is only one immediate base class.

• Assignment to this in constructors and destructors is allowed. This is allowed only if anachronisms are enabled
and the “assignment to this” configuration parameter is enabled.

• A bound function pointer (a pointer to a member function for a given object) can be cast to a pointer to a function.

• A nested class name may be used as a nonnested class name provided no other class of that name has been
declared. The anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different type. A temporary is created, it is
initialized from the (converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the class type or a derived class thereof.
No (additional) temporary is used.

• A function with old-style parameter declarations is allowed and may participate in function overloading as though
it were prototyped. Default argument promotion is not applied to parameter types of such functions when the
check for compatibility is done, so that the following declares the overloading of two functions named f:

int f(int);
int f(x) char x; { return x; }

It will be noted that in C this code is legal but has a different meaning: a tentative declaration of f is followed by
its definition.

• When --nonconst_ref_anachronism is enabled, a reference to a nonconst class can be bound to a class
rvalue of the same type or a derived type thereof.

struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
};
main () {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
}

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 47

1.9.10 Extensions Accepted in Cfront 2.1 Compatibility Mode

The following extensions are accepted in cfront 2.1 compatibility mode in addition to the extensions listed in the 2.1/
3.0 section following (i.e., these are things that were corrected in the 3.0 release of cfront):

• The dependent statement of an if, while, do-while, or for is not considered to define a scope. The depen-
dent statement may not be a declaration. Any objects constructed within the dependent statement are destroyed at
exit from the dependent statement.

• Implicit conversion from integral types to enumeration types is allowed.

• A non-const member function may be called for a const object. A warning is issued.

• A const void * value may be implicitly converted to a void * value, e.g., when passed as an argument.

• When, in determining the level of argument match for overloading, a reference parameter is initialized from an
argument that requires a non-class standard conversion, the conversion counts as a user-defined conversion. (This
is an outright bug, which unfortunately happens to be exploited in the NIH class libraries.)

• When a builtin operator is considered alongside overloaded operators in overload resolution, the match of an
operand of a builtin type against the builtin type required by the builtin operator is considered a standard conver-
sion in all cases (e.g., even when the type is exactly right without conversion).

• A reference to a non-const type may be initialized from a value that is a const-qualified version of the same
type, but only if the value is the result of selecting a member from a const class object or a pointer to such an
object.

• The cfront 2.1 “transitional model” for nested type support is simulated. In the transitional model a nested type is
promoted to the file scope unless a type of the same name already exists at the file scope. It is an error to have two
nested classes of the same name that need to be promoted to file scope or to define a type at file scope after the
declaration of a nested class of the same name. This “feature” actually restricts the source language accepted by
the compiler. This is necessary because of the effect this feature has on the name mangling of functions that use
nested types in their signature. This feature does not apply to template classes and is only enabled when the con-
figuration switch CFRONT_2_1_OBJECT_CODE_COMPATIBILITY is TRUE.

• A cast to an array type is allowed; it is treated like a cast to a pointer to the array element type. A warning is
issued.

• When an array is selected from a class, the type qualifiers on the class object (if any) are not preserved in the
selected array. (In the normal mode, any type qualifiers on the object are preserved in the element type of the
resultant array.)

• An identifier in a function is allowed to have the same name as a parameter of the function. A warning is issued.

• An expression of type void may be supplied on the return statement in a function with a void return type. A
warning is issued.

• Cfront has a bug that causes a global identifier to be found when a member of a class or one of its base classes
should actually be found. This bug is emulated in cfront compatibility mode but can be disabled by setting the
parameter CFRONT_GLOBAL_VS_MEMBER_NAME_LOOKUP_BUG to FALSE. A warning is issued when,
because of this feature, a nonstandard lookup is performed.

The following conditions must be satisfied for the nonstandard lookup to be performed:

• A member in a base class must have the same name as an identifier at the global scope. The member may be a
function, static data member, or nonstatic data member. Member type names don’t apply because a nested

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 48

type will be promoted to the global scope by cfront which disallows a later declaration of a type with the same
name at the global scope.

• The declaration of the global scope name must occur between the declaration of the derived class and the dec-
laration of an out-of-line constructor or destructor. The global scope name must be a type name.

• No other member function definition—even one for an unrelated class—may appear between the destructor
and the offending reference. This has the effect that the nonstandard lookup applies to only one class at any
given point in time. For example:

struct B {
 void func(const char*);
};
struct D : public B {
public:
 D();
 void Init(const char*);
};
struct func {
 func(const char* msg);
};
D::D(){}
void D::Init(const char* t)
{
 // Should call B::func -- calls func::func instead.
 new func(t);
}

The global scope name must be present in a base class (B::func in this example) for the nonstandard lookup
to occur. Even if the derived class were to have a member named func, it is still the presence of B::func
that determines how the lookup will be performed.

• A parameter of type “const void *” is allowed on operator delete; it is treated as equivalent to “void
*”.

• A period (“.”) may be used for qualification where “::” should be used. Only “::” may be used as a global
qualifier. Except for the global qualifier, the two kinds of qualifier operators may not be mixed in a given name
(i.e., you may say A::B::C or A.B.C but not A::B.C or A.B::C). A period may not be used in a vacuous
destructor reference nor in a qualifier that follows a template reference such as A<T>::B.

• Cfront 2.1 does not correctly look up names in friend functions that are inside class definitions. In this example
function f should refer to the functions and variables (e.g., f1 and a1) from the class declaration. Instead, the
global definitions are used.

int a1;
int e1;
void f1();
class A {
 int a1;
 void f1();
 friend void f()
 {

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 49

 int i1 = a1; // cfront uses global a1
 f1(); // cfront uses global f1
 }
};

Only the innermost class scope is (incorrectly) skipped by cfront as illustrated in the following example.

int a1;
int b1;
struct A {
 static int a1;
 class B {
 static int b1;
 friend void f()
 {
 int i1 = a1; // cfront uses A::a1
 int j1 = b1; // cfront uses global b1
 }
 };
};

• operator= may be declared as a nonmember function. (This is flagged as an anachronism by cfront 2.1)

• A type qualifier is allowed (but ignored) on the declaration of a constructor or destructor. For example:

class A {
 A() const; // No error in cfront 2.1 mode
};

• The preprocessing symbol c_plusplus is defined in addition to the standard __cplusplus.

1.9.11 Extensions Accepted in Cfront 2.1 and 3.0 Compatibility Mode

The following extensions are accepted in both cfront 2.1 and cfront 3.0 compatibility mode (i.e., these are features or
problems that exist in both cfront 2.1 and 3.0):

• Type qualifiers on the this parameter may to be dropped in contexts such as this example:

struct A {
 void f() const;
};
void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a pointer to non-const, because
a call using the pointer is permitted to modify the object and the function pointed to will actually not modify the
object. The opposite assignment would not be safe.

• Conversion operators specifying conversion to void are allowed.

• A nonstandard friend declaration may introduce a new type. A friend declaration that omits the elaborated type
specifier is allowed in default mode, but in cfront mode the declaration is also allowed to introduce a new type
name.

struct A {
 friend B;
};

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 50

• The third operand of the ? operator is a conditional expression instead of an assignment expression as it is in the
modern language.

• A reference to a pointer type may be initialized from a pointer value without use of a temporary even when the
reference pointer type has additional type qualifiers above those present in the pointer value. For example,

int *p;
const int *&r = p; // No temporary used

• A reference may be initialized with a null.

• Because cfront does not check the accessibility of types, access errors for types are issued as warnings instead of
errors.

• When matching arguments of an overloaded function, a const variable with value zero is not considered to be a
null pointer constant. In general, in overload resolution a null pointer constant must be spelled “0” to be consid-
ered a null pointer constant (e.g., ’\0’ is not considered a null pointer constant).

• Inside the definition of a class type, the qualifier in the declarator for a member declaration is dropped if that qual-
ifier names the class being defined.

struct S {
 void S::f(); // No warning with --microsoft_bugs
};

• An alternate form of declaring pointer-to-member-function variables is supported, namely:

struct A {
 void f(int);
 static void sf(int);
 typedef void A::T3(int); // nonstd typedef decl
 typedef void T2(int); // std typedef
};
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

where T is construed to name a routine type for a nonstatic member function of class A that takes an int argu-
ment and returns void; the use of such types is restricted to nonstandard pointer-to-member declarations. The
declarations of T and pmf in combination are equivalent to a single standard pointer-to-member declaration:

void (A::* pmf)(int) = &A::f;
A nonstandard pointer-to-member declaration that appears outside of a class declaration, such as the declaration
of T, is normally invalid and would cause an error to be issued. However, for declarations that appear within a
class declaration, such as A::T3, this feature changes the meaning of a valid declaration. cfront version 2.1
accepts declarations, such as T, even when A is an incomplete type; so this case is also excepted.

• Protected member access checking is not done when the address of a protected member is taken. For example:

class B { protected: int i; };
class D : public B { void mf(); };
void D::mf() {
 int B::* pmi1 = &B::i; // error, OK in cfront mode
 int D::* pmi2 = &D::i; // OK
}

Note that protected member access checking for other operations (i.e., everything except taking a pointer-to-
member address) is done in the normal manner.

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 51

• The destructor of a derived class may implicitly call the private destructor of a base class. In default mode this is
an error but in cfront mode it is reduced to a warning. For example:

class A {
 ~A();
};
class B : public A {
 ~B();
};
B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is a parameter declaration or an argument expression,
the pattern type-name-or-keyword(identifier...) is treated as an argument. For example:

class A { A(); };
double d;
A x(int(d));
A(x2);

By default int(d) is interpreted as a parameter declaration (with redundant parentheses), and so x is a function;
but in cfront-compatibility mode int(d) is an argument and x is a variable.

The declaration A(x2); is also misinterpreted by cfront. It should be interpreted as the declaration of an object
named x2, but in cfront mode is interpreted as a function style cast of x2 to the type A.

Similarly, the declaration

int xyz(int());
declares a function named xyz, that takes a parameter of type “function taking no arguments and returning an
int.” In cfront mode this is interpreted as a declaration of an object that is initialized with the value int()
(which evaluates to zero).

• A named bit-field may have a size of zero. The declaration is treated as though no name had been declared.

• Plain bit fields (i.e., bit fields declared with a type of int) are always unsigned.

• The name given in an elaborated type specifier is permitted to be a typedef name that is the synonym for a class
name, e.g.,

typedef class A T;
class T *pa; // No error in cfront mode

• No warning is issued on duplicate size and sign specifiers.

short short int i; // No warning in cfront mode

• An extra comma is allowed after the last argument in an argument list, as for example in

f(1, 2,);

• A constant pointer-to-member-function may be cast to a pointer-to-function. A warning is issued.

struct A {int f();};
main () {
 int (*p)();
 p = (int (*)())A::f; // Okay, with warning
}

• Arguments of class types that allow bitwise copy construction but also have destructors are passed by value (i.e.,
like C structures), and the destructor is not called on the “copy.” In normal mode, the class object is copied into a
temporary, the address of the temporary is passed as the argument, and the destructor is called on the temporary
after the call returns. Note that because the argument is passed differently (by value instead of by address), code

1.9 C++ Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 52

like this compiled in cfront mode is not calling-sequence compatible with the same code compiled in normal
mode. In practice, this is not much of a problem, since classes that allow bitwise copying usually do not have
destructors.

• A union member may be declared to have the type of a class for which the user has defined an assignment opera-
tor (as long as the class has no constructor or destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef name may appear as the class name in
an elaborated type specifier.

typedef struct { int i, j; } S;
struct S x; // No error in cfront mode

• Two member functions may be declared with the same parameter types when one is static and the other is non-
static with a function qualifier.

class A {
 void f(int) const;
 static void f(int); // No error in cfront mode
};

• The scope of a variable declared in the for-init-statement is the scope to which the for statement
belongs.

int f(int i) {
 for (int j = 0; j < i; ++j) { /* ... */ }
 return j; // No error in cfront mode
}

• Function types differing only in that one is declared extern "C" and the other extern "C++" can be
treated as identical:

typedef void (*PF)();
extern "C" typedef void (*PCF)();
void f(PF);
void f(PCF);

When DEFAULT_C_AND_CPP_FUNCTION_TYPES_ARE_DISTINCT is FALSE, PF and PCF are consid-
ered identical and void f(PCF) is treated as a compatible redeclaration of f. (By contrast, in standard C++ PF
and PCF are different and incompatible types — PF is a pointer to an extern "C++" function whereas PCF is
a pointer to an extern "C" function — and the two declarations of f create an overload set.)

However, even if DEFAULT_C_AND_CPP_FUNCTION_TYPES_ARE_DISTINCT is TRUE, it is possible to
set IMPL_CONV_BETWEEN_C_AND_CPP_FUNCTION_PTRS_POSSIBLE to TRUE as well, so that in cfront-
compatibility mode an implicit type conversion will always be done between a pointer to an extern "C" func-
tion and a pointer to an extern "C++" function.

• Functions declared inline have internal linkage.

• enum types are regarded as integral types.

• An uninitialized const object of non-POD class type is allowed even if its default constructor is implicitly
declared:

struct A { virtual void f(); int i; };
const A a;

• A function parameter type is allowed to involve a pointer or reference to array of unknown bounds.

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 53

• If the user declares an operator= function in a class, but not one that can serve as the default operator=, and
bitwise assignment could be done on the class, a default operator= is not generated; only the user-written
operator= functions are considered for assignments (and therefore bitwise assignment is not done).

• A member function declaration whose return type is omitted (and thus implicitly int) and whose name is found
to be that of a type is accepted if it takes no parameters:

typedef int I;
struct S {
 I(); // Accepted in cfront mode (declares "int S::I()")
 I(int); // Not accepted
};

• Default arguments are retained as part of deduced function types.

1.10 C Dialect Accepted

The front end accepts the ANSI/ISO C language as defined by ANSI/ISO 9899:1990. In C99 mode, it accepts the
ANSI/ISO C language defined by ISO/IEC 9899:1999 as modified by Technical Corrigenda 1 through 3. In C11
mode, it accepts the C language defined by ISO/IEC 9899:2011 and in C18 mode the language defined by ISO/IEC
9899:2018 (which only differs from C11 in minor ways). In C23 mode, many of the features of the latest anticipated
draft standard have been implemented. See https://www.edg.com/c/features for up-to-date information
about feature implementation.

When Embedded C extensions are enabled, the front end can accept the constructs described in ISO/IEC TR 18037
(fixed-point types, named address space qualifiers, and named-register storage class specifiers).

The front end extensively emulates the C modes of the Microsoft, GNU, and clang compilers. See “GNU C++
Mode” on page 42. As with C++ mode, only one emulation mode may be in effect for a given compilation. The --
ms_extensions and --ms_compatibility options can be used to emulate certain Microsoft behaviors irre-
spective of the emulation mode.

There is no Sun C mode corresponding to Sun C++ mode, however.

The special comments recognized by the UNIX lint program — /*ARGSUSED*/, /*VARARGS*/ (with or
without a count of non-varying arguments), and /*NOTREACHED*/ — are also recognized by the front end.

When Unified Parallel C (UPC) mode is enabled, it also accepts the core language extensions described in version 1.0
of the UPC Language Specifications (available from http://upc.gwu.edu).

1.10.1 C99 Features Available in Other Modes

Certain C language features were added in the C99 version of the ISO C standard and are supported in C99 mode. For
a full list of those features, see ISO/IEC 9899:1999. A few features are noteworthy, however, because they are imple-
mentation-specific or because they can be enabled in older C modes or (when indicated) in C++ mode:

• The options --variadic_macros, --no_variadic_macros, --extended_variadic_macros and
--no_extended_variadic_macros control whether macros taking a variable number of arguments are
recognized. Configuration flags are available to select the default setting of these options; these are also available
in C++ mode.

Ordinary variadic macros (as included in C99) are illustrated by the following example:

#define OVM(x, ...) x(__VA_ARGS__)

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 54

void f() { OVM(printf, "%s %d\n", "Three args for ", 1); }
/* Expands to: printf("%s %d\n", "Three args for ", 1) */

During expansion the special identifier __VA_ARGS__ will be replaced by the trailing arguments of the macro
invocation. If variadic macros are enabled, this special identifier can appear only in the replacement list of vari-
adic macros.

Extended variadic macros (as implemented by certain pre-C99 compilers) use a slightly different syntax and
allow the name of the variadic parameter to be chosen (instead of .../__VA_ARGS__):

#define EVM(x, args...) x(args)
void f() { EVM(printf, "%s %d\n", "Three args for ", 1); }
/* Same expansion as previous example. */

In addition, enabling extended variadic macros adds a special behavior to the token pasting operator ## when it is
followed by an empty or omitted macro argument: A preceding comma (possibly followed by white space) is
erased. Hence,

#define EVM2(fmt, args) printf(fmt , ## args)
EVM2("Hello World\n")

expands to printf("Hello World\n") and the extraneous comma is erased.

• If the LONG_LONG_ALLOWED switch is TRUE,

• the long long and unsigned long long types are accepted;

• integer constants suffixed by LL are given the type long long, and those suffixed by ULL are given the
type unsigned long long (any of the suffix letters may be written in lower case);

• the specifier %lld is recognized in printf and scanf formatting strings; and

• the long long types are accommodated in the usual arithmetic conversions.

• restrict may be used as a type qualifier for object pointer types and function parameter arrays that decay to
pointers. Its presence is recorded in the IL so that back ends can perform optimizations that would otherwise be
prevented because of possible aliasing. The keyword is enabled by --restrict; this is also available in C++.

• If VLA_ALLOWED is TRUE, variable length arrays (VLAs) are supported. VLA types may appear only in the
declaration of an identifier that belongs to a block or function-prototype scope. For example:

void addscalar(int n, int m, double a[n][m], double x) {
 int i, j;
 for (i=0; i<n; i++)
 for (j=0; j<m, j++)
 a[i][j] += x; /* a refers to a VLA with n*m elements. */
}
double A[4][8];
void f() {
 addscalar(4, 8, A, 3.14);
}

See also command line options --vla and --no_vla.

• When DESIGNATED_INITIALIZER_ENABLING_POSSIBLE is TRUE, designators may be accepted in ini-
tializers for aggregates. Designators are not allowed in C++ mode, however. The global variables designa-
tors_allowed and extended_designators_allowed are controlled by configuration flags and
command line options. In turn they control which variety (if any) of designators is recognized. See also command
line options --designators, --no_designators, --extended_designators and --no_ex-
tended_designators.

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 55

When designators_allowed is TRUE, designators of the forms .x and [k] are accepted. They can be
concatenated to reach nested aggregate elements. For example:

struct X { double a; int b[10] } x
 = { .b = { 1, [5] = 2 }, .b[3] = 1, .a = 42.0 };

In addition, when extended_designators_allowed is TRUE, designators of the form x: and
[m ... n] are accepted and the assignment (=) token becomes optional after array element designators. Field
designators of the form x: cannot immediately be followed by an assignment token (=) or another designator.
Examples:

struct X { double a; int b[10] } x
 = { b: { 1, [5 ... 9] = 2 }, .b[7] 1, a: 42.0 };
struct Y y = { b:[3] /* Error */ = 7, a: = /* Error */ 42.0 };

Designators permit multiple initializations of the same subobject: only the last value is retained, but side-effects
of prior initializing expressions do occur.

• Compound literals are supported in expressions. For example,

int *p = (int []){1, 2, 3};
creates an unnamed lvalue of type int[3] initialized as indicated. p is initialized to point to that array. Com-
pound literals are not allowed in C++ mode.

• The __generic pseudo-macro is implemented. This is an EDG extension used to support the type-generic math
header <tgmath.h>. The form of the macro reference is:

 __generic(x, y, z, func_d, func_f, func_l, func_cd, func_cf, func_cl)
where x and the optional y and z are the arguments with which a type-generic function is called, and the remain-
ing 6 arguments are the names of functions from which is selected the actual function to be called. The suffixes
with which the function names are supplied here correspond to function parameter types of double, float,
long double, double _Complex, float _Complex, and long double _Complex, respectively.
The order is fixed. Function names may be omitted. For example, <tgmath.h> may have the following macros
defined:

 #define sin(x) __generic(x,,, sin, sinf, sinl, csin, csinf,csinl)(x)
 #define fmax(x,y) __generic(x, y,,fmax, fmaxf, fmaxl,,,)(x, y)
 #define conjg(x) __generic(x,,, ,,, conjg, conjgf, conjgl)(x)

Note that sin and conjg take only one argument, that fmax has no forms that accept complex arguments, and
that conjg has no forms that accept real arguments.

There is also a __genericfx pseudo-macro that provides a similar capability for fixed-point types. The form of
the macro reference is:

__genericfx(x, fnc_hr, fnc_uhr, fnc_r, fnc_ur, fnc_lr, fnc_ulr,
 fnc_hk, fnc_uhk, fnc_k, fnc_uk, fnc_lk, fnc_ulk)

where x is as above and the remaining 12 arguments are the names of functions, with the suffixes corresponding
to function parameter types of short _Fract, unsigned short _Fract, _Fract, unsigned _Fract,
long _Fract, unsigned long _Fract, short _Accum, unsigned short _Accum, _Accum,
unsigned _Accum, long _Accum, unsigned long _Accum, respectively.

• The keywords __I__, __NAN__, and __INFINITY__ are defined as, respectively, a float _Imaginary i, a float
Not-a-Number, and a float positive Infinity. These are intended to be used by library writers to implement the C99
macros I, NAN, and INFINITY. __NAN__ and __INFINITY__ are also available in all modes, not just C99
mode.

• A trailing array member of unspecified length in a struct type is called a flexible array member. Such members are
a standard feature in C99. In default C99 mode (but not in strict C99 mode) trailing struct members can also have
a type containing a flexible array member. For example:

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 56

struct F {
 int i;
 int f[]; // OK in default and strict C99 modes
};
struct X {
 F x; // OK in default C99 mode (but not in strict mode)
};

1.10.2 ANSI C Extensions

The following extensions are accepted (these are flagged if the -A or -a option is specified):

• A translation unit (input file) can contain no declarations.

• Comment text can appear at the ends of preprocessing directives.

• __ALIGNOF__ (or __alignof__) is similar to sizeof, but returns the alignment requirement value for a
type, or 1 if there is no alignment requirement. It may be followed by a type or expression in parentheses:

__ALIGNOF__(type) __alignof__(type)
__ALIGNOF__(expression) __alignof__(expression)

The expression in the second form is not evaluated.

• __INTADDR__(expression) scans the enclosed expression as a constant expression, and converts it to an
integer constant (it is used in the offsetof macro).

• A number of “type traits pseudo-functions” (taking one or more type names) are accepted: __has_no-
throw_assign, __has_nothrow_constructor, __has_nothrow_copy, __has_no-
throw_move_assign, __has_trivial_assign, __has_trivial_constructor,
__has_trivial_copy, __has_trivial_destructor, __has_trivial_move_assign,
__has_trivial_move_constructor, __has_virtual_destructor, __is_abstract,
__is_base_of, __is_class, __is_constructible, __is_convertible_to, __is_destruc-
tible,__is_empty, __is_enum, __is_literal_type, __is_nothrow_assignable,__is_no-
throw_constructible, __is_nothrow_destructible, __is_pod, __is_polymorphic,
__is_standard_layout, __is_trivial, __is_trivially_assignable, __is_trivially_-
constructible, __is_trivially_copyable, __is_trivially_destructible, and
__is_union.

double x[__is_union(union U)]; // Okay.
These are silently accepted even in strict modes. They ease the implementation C++11 metaprogramming tem-
plates (many of which were first introduced by ISO/IEC TR 19768).

• Bit fields may have base types that are enums or integral types besides int and unsigned int. This matches
A.6.5.8 in the ANSI Common Extensions appendix.

• If the ADDR_OF_BIT_FIELD_ALLOWED flag is TRUE, the address of a bit field may be taken if the bit field
has the same size and alignment as one of the integral types. A warning is issued.

• The last member of a struct may have an incomplete array type. It may not be the only member of the struct
(otherwise, the struct would have zero size).

• A file-scope array may have an incomplete struct, union, or enum type as its element type. The type must be
completed before the array is subscripted (if it is), and by the end of the compilation if the array is not extern. In
C++, an incomplete class is also allowed.

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 57

• Static functions may be declared in function and block scopes. Their declarations are moved to the file scope.

• enum tags may be incomplete: one may define the tag name and resolve it (by specifying the brace-enclosed list)
later.

• The values of enumeration constants may be given by expressions that evaluate to unsigned quantities that fit in
the unsigned int range but not in the int range. A warning is issued for suspicious cases.

/* When ints are 32 bits: */
enum a {w = -2147483648}; /* No warning */
enum b {x = 0x80000000}; /* No warning */
enum c {y = 0x80000001}; /* No warning */
enum d {z = 2147483649}; /* Warning */

• An extra comma is allowed at the end of an enum list. A remark is issued except in pcc mode.

• The final semicolon preceding the closing } of a struct or union specifier may be omitted. A warning is issued
except in pcc mode.

• A label definition may be immediately followed by a right brace. (Normally, a statement must follow a label defi-
nition.) A warning is issued.

• An empty declaration (a semicolon with nothing before it) is allowed. A remark is issued.

• An initializer expression that is a single value and is used to initialize an entire static array, struct, or union need
not be enclosed in braces. ANSI C requires the braces.

• In an initializer, a pointer constant value may be cast to an integral type if the integral type is big enough to
contain it.

• The address of a variable with register storage class may be taken. A warning is issued.

• In an integral constant expression, an integer constant may be cast to a pointer type and then back to an integral
type.

• long float is accepted as a synonym for double.

• If PTR_TO_INCOMP_ARRAY_ARITHMETIC_ALLOWED is TRUE, pointers to incomplete arrays may be used
in pointer addition, subtraction, and subscripting:

int (*p)[];
...
q = p[0];

A warning is issued if the value added or subtracted is anything other than a constant zero. Since the type pointed
to by the pointer has zero size, the value added to or subtracted from the pointer is multiplied by zero and there-
fore has no effect on the result.

• Benign redeclarations of typedef names are allowed. That is, a typedef name may be redeclared in the same
scope as the same type. A warning is issued.

• Dollar signs can be accepted in identifiers through use of a command line option or by setting a configuration
parameter. The default is to not allow dollar signs in identifiers.

• Numbers are scanned according to the syntax for numbers rather than the pp-number syntax. Thus, 0x123e+1
is scanned as three tokens instead of one invalid token. (If the -A or -a option is specified, of course, the pp-
number syntax is used.)

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 58

• Assignment and pointer difference are allowed between pointers to types that are interchangeable but not identi-
cal, for example, unsigned char * and char *. This includes pointers to same-sized integral types (e.g.,
typically, int * and long *). A warning is issued except in pcc mode. Assignment of a string constant to a
pointer to any kind of character is allowed without a warning.

• Assignment of pointer types is allowed in cases where the destination type has added type qualifiers that are not at
the top level (e.g., int ** to const int **). Comparisons and pointer difference of such pairs of pointer
types are also allowed. A warning is issued.

• In operations on pointers, a pointer to void is always implicitly converted to another type if necessary, and a null
pointer constant is always implicitly converted to a null pointer of the right type if necessary. In ANSI C, some
operators allow such things, and others (generally, where it does not make sense) do not allow them.

• Pointers to different function types may be assigned or compared for equality (==) or inequality (!=) without an
explicit type cast. A warning is issued. This extension is not allowed in C++ mode.

• A pointer to void may be implicitly converted to or from a pointer to a function type.

• If the ATT_PREPROCESSING_EXTENSIONS_ALLOWED switch is TRUE, the #assert preprocessing exten-
sions of AT&T System V release 4 are allowed. These allow definition and testing of predicate names. Such
names are in a name space distinct from all other names, including macro names. A predicate name is given a
definition by a preprocessing directive of the form

#assert name
#assert name(token-sequence)

which defines the predicate name. In the first form, the predicate is not given a value. In the second form, it is
given the value token-sequence.

Such a predicate can be tested in a #if expression, as follows

#name(token-sequence)
which has the value 1 if a #assert of that name with that token-sequence has appeared, and 0 otherwise. A
given predicate may be given more than one value at a given time.

A predicate may be deleted by a preprocessing directive of the form

#unassert name
#unassert name(token-sequence)

The first form removes all definitions of the indicated predicate name; the second form removes just the indicated
definition, leaving any others there may be.

• GNU line directive flags are accepted on #line directives. The system header flag is recognized, and the associ-
ated code is treated as if found in a system include directory.

• asm statements and declarations are accepted. This is disabled in strict ANSI C mode (-A or -a and -m options)
since it conflicts with the ANSI C standard for something like

asm("xyz");
which ANSI C interprets as a call of an implicitly-defined function asm and which by default the front end inter-
prets as an asm statement.

• When ASM_FUNCTION_ALLOWED is TRUE, asm functions are accepted, and __asm is recognized as a
synonym for asm. An asm function body is represented in the IL by an uninterpreted null-terminated string con-
taining the text that appears in the source (including the text of source comments when INCLUDE_COM-
MENTS_IN_ASM_FUNC_BODY is TRUE). An asm function must be declared with no storage class, with a
prototyped parameter list, and with no omitted parameters:

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 59

asm void f(int,int) {
 ...
}

If asm functions are recognized and the C-generating back end is used, it is required that ANSI-C be generated,
not K&R C, because the asm function must be put out with a prototyped parameter list.

• If ALLOW_NONSTANDARD_ANONYMOUS_UNIONS is TRUE, an extension is supported to allow constructs
similar to C++ anonymous unions, including the following:

• not only anonymous unions but also anonymous structs are allowed — that is, their members are promoted to
the scope of the containing struct and looked up like ordinary members;

• they can be introduced into the containing struct by a typedef name — they needn’t be declared directly, as
with true anonymous unions; and

• a tag may be declared (C mode only).

Among the restrictions: the extension only applies to constructs within structs.

• If DEFAULT_ADDRESS_OF_ELLIPSIS_ALLOWED is TRUE, the expression &... is accepted in the body of
a function in which an ellipsis appears in the parameter list. It is needed to support some versions of macro
va_start in stdarg.h.

• If DEFAULT_ALLOW_ELLIPSIS_ONLY_PARAM_IN_C_MODE is TRUE, an ellipsis may appear by itself in
the parameter list of a function declaration — e.g., f(...). A diagnostic is issued in strict ANSI C mode.

• External entities declared in other scopes are visible. A warning is issued.

void f1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */ }

• A non-lvalue array expression is converted to a pointer to the first element of the array when it is subscripted or
similarly used.

• The nonstandard preprocessing directive #include_next is supported. This is a variant of the #include
directive. It searches for the named file only in the directories on the search path that follow the directory in which
the current source file (the one containing the #include_next directive) is found. (This is an extension found
in the GNU C compiler.)

• The nonstandard preprocessing directive #warning is supported. It is similar to the #error directive, but
results in a warning instead of a catastrophic error when processed. This directive is not recognized in strict mode.
(This is an extension found in GNU C compilers.)

In the following areas considered “undefined behavior” by the ANSI C standard, the front end does the following:

• Adjacent wide and non-wide string literals are not concatenated unless wchar_t and char are the same type.
(In C++ mode, when wchar_t is a keyword, adjacent wide and non-wide string literals are never concatenated.)

• In character and string escapes, if the character following the \ has no special meaning, the value of the escape is
the character itself. Thus "\s" == "s". A warning is issued.

• A struct that has no named fields but at least one unnamed field is accepted by default, but a diagnostic (a
warning or error) is issued in strict ANSI C mode.

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 60

1.10.3 K&R/pcc Mode

When pcc mode is specified, the front end accepts the traditional C language defined by The C Programming Lan-
guage, first edition, by Kernighan and Ritchie (K&R), Prentice-Hall, 1978. In addition, it provides almost complete
compatibility with the Reiser cpp and Johnson pcc widely used as part of UNIX systems; since there is no docu-
mentation of the exact behavior of those programs, complete compatibility cannot be guaranteed.

In general, when compiling in pcc mode, the front end attempts to interpret a source program that is valid to pcc in
the same way that pcc would. However, ANSI features that do not conflict with this behavior are not disabled.

In some cases where pcc allows a highly questionable construct, the front end will accept it but give a warning,
where pcc would be silent (for example: 0x, a degenerate hexadecimal number, is accepted as zero).

The known cases where the front end is not compatible with pcc are the following:

• Token pasting is not done outside of macro expansions (i.e., in the primary source line) when two tokens are sep-
arated only by a comment. That is, a/**/b is not considered to be ab. The pcc behavior in that case can be
gotten by preprocessing to a text file and then compiling that file.

The textual output from preprocessing is also equivalent but not identical: the blank lines and white space will not
be exactly the same.

• pcc will consider the result of a ?: operator to be an lvalue if the first operand is constant and the second and
third operands are compatible lvalues. This front end will not.

• pcc mis-parses the third operand of a ?: operator in a way that some programs exploit:

i ? j : k += l
is parsed by pcc as

i ? j : (k += l)
which is not correct, since the precedence of += is lower than the precedence of ?:. This front end will generate
an error for that case.

• lint recognizes the keywords for its special comments anywhere in a comment, regardless of whether or not
they are preceded by other text in the comment. The front end only recognizes the keywords when they are the
first identifier following an optional initial series of blanks and/or horizontal tabs. lint also recognizes only a
single digit of the VARARGS count; the front end will accumulate as many digits as appear.

The differences in pcc mode relative to the default ANSI mode are as follows:

• The keywords signed, const, and volatile are disabled, to avoid problems with items declared with those
names in old-style code. Those keywords were ANSI C inventions. The other non-K&R keywords (enum and
void) are judged to have existed already in code and are not disabled.

• Declarations of the form

typedef some-type void;
are ignored.

• Assignment is allowed between pointers and integers, and between incompatible pointer types, without an explicit
cast. A warning is issued.

• A field selection of the form p->field is allowed even if p does not point to a struct or union that contains
field. p must be a pointer or an integer. Likewise, x.field is allowed even if x is not a struct or union that con-

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 61

tains field. x must be an lvalue. For both cases, all definitions of field as a field must have the same offset within
their struct or union.

• If the configuration flag TARG_NO_ERROR_ON_INTEGER_OVERFLOW is TRUE, overflows detected while
folding signed integer operations on constants will cause warnings rather than errors. Usually this should be set to
match the desired target machine behavior on integer operations in C.

• If the configuration flag SAME_REPR_INTS_INTERCHANGEABLE_IN_IL is TRUE, integral types with the
same representation (size, signedness, and alignment) will be considered identical and may be used interchange-
ably. For example, this means that int and long will be interchangeable if they have the same size.

• A warning will be issued for a & applied to an array. The type of such an operation is “address of array element”
rather than “address of array”.

• For the shift operators << and >>, the usual arithmetic conversions are done, the right operand is converted to
int, and the result type is the type of the left operand. In ANSI C, the integral promotions are done on the two
operands, and the result type is the type of the left operand. The effect of this difference is that, in pcc mode, a
long shift count will force the shift to be done as long.

• When preprocessing output is generated, the line-identifying directives will have the pcc form instead of the
ANSI form.

• String literals will not be shared. Identical string literals will cause multiple copies of the string to be allocated.

• sizeof may be applied to bit fields; the size is that of the underlying type (e.g., unsigned int).

• lvalues cast to a type of the same size remain lvalues, except when they involve a floating-point conversion.

• When a function parameter list begins with a typedef identifier, the parameter list is considered prototyped
only if the typedef identifier is followed by something other than a comma or right parenthesis:

typedef int t;
int f(t) {} /* Old-style list */
int g(t x) {} /* Prototyped list, parameter x of type t */

That is, function parameters are allowed to have the same names as typedefs. In the normal ANSI mode, of
course, any parameter list that begins with a typedef identifier is considered prototyped, so the first example
above would give an error.

• The names of functions and of external variables are always entered at the file scope.

• A function declared static, used, and never defined is treated as if its storage class were extern.

• A file-scope array that has an unspecified storage class and remains incomplete at the end of the compilation will
be treated as if its storage class is extern (in ANSI mode, the number of elements is changed to 1, and the
storage class remains unspecified).

• The empty declaration

struct x;
will not hide an outer-scope declaration of the same tag.

• In a declaration of a member of a struct or union, no diagnostic is issued for omitting the declarator list; nev-
ertheless, such a declaration has no effect on the layout. For example,

struct s {char a; int; char b[2];} v; /* sizeof(v) is 3 */

• enums are always given type int. In ANSI mode, and depending on the configuration flag enum_types_-
can_be_smaller_than_int, smaller integral types will be used if possible.

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 62

• No warning is generated for a storage specifier appearing in other than the first position in a list of specifiers (as in
int static).

• short, long, and unsigned are treated as “adjectives” in type specifiers, and they may be used to modify a
typedef type.

• A “plain” char is considered to be the same as either signed char or unsigned char, depending on the
installation default and command-line options. In ANSI C, “plain” char is a third type distinct from both
signed char and unsigned char.

• Free-standing tag declarations are allowed in the parameter declaration list for a function with old-style parame-
ters.

• float function parameters are promoted to double function parameters.

• float functions are promoted to double functions.

• Declaration specifiers are allowed to be completely omitted in declarations (ANSI C allows this only for function
declarations). Thus

i;
declares i as an int variable. A warning is issued.

• The = preceding an initializer may be omitted. A warning is issued. See K&R first edition, Appendix A, section
17 (anachronisms). This is accepted only if C_ANACHRONISMS_ALLOWED is TRUE.

• All float operations are done as double.

• __STDC__ is left undefined.

• Extra spaces to prevent pasting of adjacent confusable tokens are not generated in textual preprocessing output.

• The first directory searched for include files is the directory containing the file containing the #include instead
of the directory containing the primary source file.

• Trigraphs are not recognized.

• Comments are deleted entirely (instead of being replaced by one space) in preprocessing output.

• 0x is accepted as a hexadecimal 0, with a warning.

• 1E+ is accepted as a floating-point constant with an exponent of 0, with a warning.

• The compound assignment operators may be written as two tokens (e.g., += may be written + =).

• The compound assignment operators may be written in their old-fashioned reversed forms (e.g., -= may be
written =-). A warning is issued. This is described in K&R first edition, Appendix A, section 17 (anachronisms).
This is accepted only if C_ANACHRONISMS_ALLOWED is TRUE.

• The digits 8 and 9 are allowed in octal constants.

• A warning rather than an error is issued for integer constants that are larger than can be accommodated in an
unsigned long. The value is truncated to an acceptable number of low-order bits.

• The types of large integer constants are determined according to the K&R rules (they won’t be unsigned in
some cases where ANSI C would define them that way). Integer constants with apparent values larger than
LONG_MAX are typed as long and are also marked as “non-arithmetic”, which suppresses some warnings when
using them.

1.10 C Dialect Accepted

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 63

• The escape \a (alert) is not recognized in character and string constants.

• Macro expansion is done differently. Arguments to macros are not macro-expanded before being inserted into the
expansion of the macro. Any macro invocations in the argument text are expanded when the macro expansion is
rescanned. With this method, macro recursion is possible and is checked for.

• Token pasting inside macro expansions is done differently. End-of-token markers are not maintained, so tokens
that abut after macro substitution may be parsed as a single token.

• Macro parameter names inside character and string constants are recognized and substituted for.

• Macro invocations having too many arguments are flagged with a warning rather than an error. The extra argu-
ments are ignored.

• Macro invocations having too few arguments are flagged with a warning rather than an error. A null string is used
as the value of the missing parameters.

• Extra #elses (after the first has appeared in an #if block) are ignored, with a warning.

• Expressions in a switch statement are cast to int; this differs from the ANSI C definition in that a long
expression is (possibly) truncated.

• The promotion rules for integers are different: unsigned char and unsigned short are promoted to
unsigned int.

• An identifier in a function is allowed to have the same name as a parameter of the function. A warning is issued.

1.10.4 Extensions Accepted in SVR4 Compatibility Mode

The following extensions are accepted in SVR4 C compatibility mode:

• Macro invocations having too many arguments are flagged with a warning rather than an error. The extra argu-
ments are ignored.

• Macro invocations having too few arguments are flagged with a warning rather than an error. A null string is used
as the value of the missing parameters.

• The sequence /**/ in a macro definition is treated as equivalent to the token-pasting operator ##.

• lvalues cast to a type of the same size remain lvalues, except when they involve a floating-point conversion.

• Assignment is allowed between pointers and integers, and between incompatible pointer types, without an explicit
cast. A warning is issued.

• A field selection of the form p->field is allowed even if p does not point to a struct or union that contains
field. p must be a pointer. Likewise, x.field is allowed even if x is not a struct or union that contains field. x
must be an lvalue. For both cases, all definitions of field as a field must have the same offset within their struct
or union.

• In an integral constant expression, an integer constant may be cast to a pointer type and then back to an integral
type.

• Incompatible external object declarations are allowed if the object types share the same underlying representation.

• Certain incompatible function declarations are allowed. A warning is issued.

1.11 Namespace Support

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 64

typedef unsigned int size_t;
extern size_t strlen(const char *);
extern int strlen(); /* Warning */

1.11 Namespace Support

Namespaces are enabled by default (see DEFAULT_NAMESPACES_ENABLED) except in the cfront modes. The
command-line options --namespaces and --no_namespaces can be used to enable or disable the features.

When doing name lookup in a template instantiation, some names must be found in the context of the template defi-
nition while others may also be found in the context of the template instantiation. The front end implements two dif-
ferent instantiation lookup algorithms: the one mandated by the standard (referred to as “dependent name lookup”),
and the one that existed before dependent name lookup was implemented.

Dependent name lookup is done in strict mode (unless explicitly disabled by another command-line option) or when
dependent name processing is enabled by either a configuration flag or command-line option.

Dependent Name Processing

When doing dependent name lookup, the front end implements the instantiation name lookup rules specified in the
standard. This processing requires that nonclass prototype instantiations be done. This in turn requires that the code
be written using the typename and template keywords as required by the standard.

Lookup Using the Referencing Context

When not using dependent name lookup, the front end uses a name lookup algorithm that approximates the two-phase
lookup rule of the standard, but does so in such a way that is more compatible with existing code and existing compil-
ers.

When a name is looked up as part of a template instantiation but is not found in the local context of the instantiation,
it is looked up in a synthesized instantiation context that includes both names from the context of the template defini-
tion and names from the context of the instantiation. Here’s an example:

namespace N {
 int g(int);
 int x = 0;
 template <class T> struct A {
 T f(T t) { return g(t); }
 T f() { return x; }
 };
}
namespace M {
 int x = 99;
 double g(double);
 N::A<int> ai;
 int i = ai.f(0); // N::A<int>::f(int) calls N::g(int)
 int i2 = ai.f(); // N::A<int>::f() returns 0 (= N::x)
 N::A<double> ad;
 double d = ad.f(0); // N::A<double>::f(double) calls M::g(double)
 double d2 = ad.f(); // N::A<double>::f() also returns 0 (= N::x)
}

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 65

The lookup of names in template instantiations does not conform to the rules in the standard in the following respects:

• Although only names from the template definition context are considered for names that are not functions, the
lookup is not limited to those names visible at the point at which the template was defined.

• Functions from the context in which the template was referenced are considered for all function calls in the tem-
plate. Functions from the referencing context should only be visible for “dependent” function calls.

For details of the algorithm implemented, see the Symbol Table chapter (in particular the section entitled “Instantia-
tion Context Lookup”).

Argument Dependent Lookup

When argument-dependent lookup is enabled, functions made visible using argument-dependent lookup overload
with those made visible by normal lookup. The standard requires that this overloading occur even when the name
found by normal lookup is a block extern declaration. The front end does this overloading, but in default mode,
argument-dependent lookup is suppressed when the normal lookup finds a block extern.

This means a program can have different behavior, depending on whether it is compiled with or without argument-
dependent lookup, even if the program makes no use of namespaces. For example:

struct A { };
A operator+(A, double);
void f() {
 A a1;
 A operator+(A, int);
 a1 + 1.0; // calls operator+(A, double) with arg-dependent
} // lookup enabled but otherwise calls
 // operator+(A, int);

Runtime Support

The headers and runtime provided with the EDG front end support two different versions (i.e., with and without
namespaces) under control of __EDG_RUNTIME_USES_NAMESPACES, a preprocessing option defined by the
front end.

1.12 Template Instantiation

The C++ language includes the concept of templates. A template is a description of a class or function that is a model

for a family of related classes or functions.1 For example, one can write a template for a Stack class, and then use a
stack of integers, a stack of floats, and a stack of some user-defined type. In the source, these might be written
Stack<int>, Stack<float>, and Stack<X>. From a single source description of the template for a stack, the
compiler can create instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed in a compilation. However, the instantia-
tions of template functions, template variables, member functions of template classes, and static data members of
template classes (hereafter referred to as template entities) are not necessarily done immediately, for several reasons:

1.Since templates are descriptions of entities (typically, classes) that are parameterizable according to the types they operate upon,
they are sometimes called parameterized types.

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 66

• One would like to end up with only one copy of each instantiated entity across all the object files that make up a
program. (This of course applies to entities with external linkage.)

• The language allows one to write a specialization of a template entity, i.e., a specific version to be used in place of
a version generated from the template for a specific data type. (One could, for example, write a version of
Stack<int>, or of just Stack<int>::push, that replaces the template-generated version; often, such a spe-
cialization provides a more efficient representation for a particular data type.) Since the compiler cannot know,
when compiling a reference to a template entity, if a specialization for that entity will be provided in another com-
pilation, it cannot do the instantiation automatically in any source file that references it. (The modern C++ lan-
guage requires that a specialization be declared in every compilation in which it is used, but for compatibility with
existing code and older compilers the EDG front end does not require that in some modes. See the command-line
option --no_distinct_template_signatures.)

• C++ templates can be exported (i.e., declared with the keyword export). Such templates can be used in a trans-
lation unit that does not contain the definition of the template to instantiate. The instantiation of such a template
must be delayed until the template definition has been found.

• The language also dictates that template functions that are not referenced should not be compiled, that, in fact,
such functions might contain semantic errors that would prevent them from being compiled. Therefore, a refer-
ence to a template class should not automatically instantiate all the member functions of that class.

(It should be noted that certain template entities are always instantiated when used, e.g., inline functions.)

From these requirements, one can see that if the compiler is responsible for doing all the instantiations automatically,
it can only do so on a program-wide basis. That is, the compiler cannot make decisions about instantiation of template
entities until it has seen all the source files that make up a complete program.

The EDG C++ front end provides an instantiation mechanism that does automatic instantiation at link time. For cases
where the programmer wants more explicit control over instantiation, the front end also provides instantiation modes
and instantiation pragmas, which can be used to exert fine-grained control over the instantiation process.

1.12.1 Automatic Instantiation

The goal of an automatic instantiation mode is to provide painless instantiation. The programmer should be able to
compile source files to object code, then link them and run the resulting program, and never have to worry about how
the necessary instantiations get done.

In practice, this is hard for a compiler to do, and different compilers use different automatic instantiation schemes
with different strengths and weaknesses:

• AT&T/USL/Novell/SCO’s cfront product saves information about each file it compiles in a special directory
called ptrepository. It instantiates nothing during normal compilations. At link time, it looks for entities that
are referenced but not defined, and whose mangled names indicate that they are template entities. For each such
entity, it consults the ptrepository information to find the file containing the source for the entity, and it does
a compilation of the source to generate an object file containing object code for that entity. This object code for
instantiated objects is then combined with the “normal” object code in the link step.

The programmer using cfront must follow a particular coding convention: all templates must be declared in “.h”
files, and for each such file there must be a corresponding “.C” file containing the associated definitions. The
compiler is never told about the “.C” files explicitly; one does not, for example, compile them in the normal way.
The link step looks for them when and if it needs them, and does so by taking the “.h” file name and replacing its

suffix.1

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 67

This scheme has the disadvantage that it does a separate compilation for each instantiated function (or, at best, one
compilation for all the member functions of one class). Even though the function itself is often quite small, it must
be compiled along with the declarations for the types on which the instantiation is based, and those declarations
can easily run into many thousands of lines. For large systems, these compilations can take a very long time. The
link step tries to be smart about recompiling instantiations only when necessary, but because it keeps no fine-
grained dependency information, it is often forced to “recompile the world” for a minor change in a “.h” file. In
addition, cfront has no way of ensuring that preprocessing symbols are set correctly when it does these instantia-
tion compilations, if preprocessing symbols are set other than on the command line.

• Borland’s C++ compiler instantiates everything referenced in a compilation, then uses a special linker to remove
duplicate definitions of instantiated functions.

The programmer using Borland’s compiler must make sure that every compilation sees all the source code it
needs to instantiate all the template entities referenced in that compilation. That is, one cannot refer to a template
entity in a source file if a definition for that entity is not included by that source file. In practice, this means that
either all the definition code is put directly in the “.h” files, or that each “.h” file includes an associated “.C”
(actually, “.CPP”) file.

This scheme is straightforward, and works well for small programs. For large systems, however, it tends to
produce very large object files, because each object file must contain object code (and symbolic debugging infor-
mation) for each template entity it references.

EDG’s approach is a little different. It requires that, for each instantiation of a non-exported template, there is some
(normal, top-level, explicitly-compiled) source file that contains the definition of the template entity, a reference that

causes the instantiation, and the declarations of any types required for the instantiation.1 This requirement can be met
in various ways:

• The Borland convention: each “.h” file that declares a template entity also contains either the definition of the
entity or includes another file containing the definition.

• Implicit inclusion: when the compiler sees a template declaration in a “.h” file and discovers a need to instantiate
that entity, it is given permission to go off looking for an associated definition file having the same base name and
a different suffix, and it implicitly includes that file at the end of the compilation. This method allows most pro-
grams written using the cfront convention to be compiled with EDG’s approach. See the section on implicit inclu-
sion.

• The ad hoc approach: the programmer makes sure that the files that define template entities also have the defini-
tions of all the available types, and adds code or pragmas in those files to request instantiation of the entities there.

Exported templates are also supported by the EDG automatic instantiation method, but they require additional mech-
anisms explained further on.

The EDG automatic instantiation method works as follows for non-exported templates:2

1.The actual implementation allows for several different suffixes and provides a command-line option to change the suffixes
sought.

1.Isn’t this always the case? No. Suppose that file A contains a definition of class X and a reference to Stack<X>::push, and
that file B contains the definition for the member function push. There would be no file containing both the definition of push
and the definition of X.

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 68

1. The first time the source files of a program are compiled, no template entities are instantiated. However, template
information files (with, by default, a “.ti” suffix) are generated and contain information about things that could

have been instantiated in each compilation1.

2. When the object files are linked together, a program called the prelinker is run. It examines the object files,
looking for references and definitions of template entities, and for the added information about entities that could
be instantiated.

3. If the prelinker finds a reference to a template entity for which there is no definition anywhere in the set of object
files, it looks for a file that indicates that it could instantiate that template entity. When it finds such a file, it
assigns the instantiation to it. The set of instantiations assigned to a given file is recorded in an associated instan-
tiation request file (with, by default, a “.ii” suffix).

4. The prelinker then executes the compiler again to recompile each file for which the instantiation request file was
changed. The original compilation command-line options (saved in the template information file) are used for the
recompilation.

5. When the compiler compiles a file, it reads the instantiation request file for that file and obeys the requests
therein. It produces a new object file containing the requested template entities (and all the other things that were
already in the object file). The compiler also receives a definition list file, which lists all the instantiations for
which definitions already exist in the set of object files. If during the compilation the compiler has the opportunity
to instantiate a referenced entity that is not on that list, it goes ahead and does the instantiation. It passes back to
the prelinker (in the definition list file) a list of the instantiations that it has “adopted” in this way, so the prelinker
can assign them to the file. This adoption process allows rapid instantiation and assignment of instantiations refer-
enced from new instantiations, and reduces the need to recompile a given file more than once during the prelink-
ing process.

6. The prelinker repeats steps 3–5 until there are no more instantiations to be adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the instantiation request files contain a complete set of instantiation
assignments. From then on, whenever source files are recompiled, the compiler will consult the instantiation request
files and do the indicated instantiations as it does the normal compilations. That means that, except in cases where the
set of required instantiations changes, the prelink step from then on will find that all the necessary instantiations are
present in the object files and no instantiation assignment adjustments need be done. That’s true even if the entire
program is recompiled.

If the programmer provides a specialization of a template entity somewhere in the program, the specialization will be
seen as a definition by the prelinker. Since that definition satisfies whatever references there might be to that entity,
the prelinker will see no need to request an instantiation of the entity. If the programmer adds a specialization to a

2.It should be noted that automatic instantiation, more than most aspects of the C++ language, requires environmental support
outside of the compiler. This is likely to be operating-system and object-format dependent. The front end is delivered with an
implementation that works under certain UNIX systems, and that involves code in the front end proper, in IL lowering, in a sep-
arate prelinker program, and in the eccp driver script. Because the environmental issues vary so much from system to system,
this code should be viewed as a sample implementation that may need adaptation to work on other systems.

1.As a configuration option, and in older versions of the front end, the information about entities that could be instantiated, etc. can
be represented in the names of generated variables added to the object program. For example, a name __CBI__mangled-name
indicates that the entity with the given mangled name could be instantiated, but wasn’t. This alternate scheme has the advantage
that the object file and the asssociated instantiation flags can never be out of sync. It has the disadvantage that the object files
produced can be quite a bit larger because of the name strings for these generated external variables.

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 69

program that has previously been compiled, the prelinker will notice that too and remove the assignment of the
instantiation from the proper instantiation request file.

The instantiation request files should not, in general, require any manual intervention. One exception: if a definition
is changed in such a way that some instantiation no longer compiles (it gets errors), and at the same time a specializa-
tion is added in another file, and the first file is being recompiled before the specialization file and is getting errors,
the instantiation request file for the file getting the errors must be deleted manually to allow the prelinker to regener-
ate it.

If the prelinker changes an instantiation assignment, it will issue a message like

C++ prelinker: A<int>::f() assigned to file test.o
C++ prelinker: executing: /edg/bin/eccp -c test.c

The automatic instantiation scheme can coexist with partial explicit control of instantiation by the programmer
through the use of pragmas or command-line specification of the instantiation mode. See the following sections.

Instantiations are normally generated as part of the object file of the translation unit in which the instantiations are
performed. But when “one instantiation per object” mode is specified, each instantiation is placed in its own object
file. One-instantiation-per-object mode is useful when generating libraries that need to include copies of the instances
referenced from the library. If each instance is not placed in its own object file, it may be impossible to link the
library with another library containing some of the same instances. Without this feature it is necessary to create each
individual instantiation object file using the manual instantiation mechanism.

The automatic instantiation mode can be configured out altogether by setting the configuration flag AUTOMATIC_-
TEMPLATE_INSTANTIATION to FALSE. It can be turned on or off using the --auto_instantiation and
--no_auto_instantiation command-line options. If automatic instantiation is turned off, the template infor-
mation file is not generated.

1.12.2 Instantiation Modes

Normally, when a file is compiled, no template entities are instantiated (except those assigned to the file by automatic
instantiation). The overall instantiation mode can, however, be changed by a command line option:

-tnone Do not automatically create instantiations of any template entities. This is the
default. It is also the usually appropriate mode when automatic instantiation is
done.

-tused Instantiate those template entities that were used in the compilation. This will
include all static data members for which there are template definitions.

-tall Instantiate all template entities declared or referenced in the compilation unit. For
each fully instantiated template class, all of its member functions and static data
members will be instantiated whether or not they were used. Nonmember tem-
plate functions will be instantiated even if the only reference was a declaration.

-tlocal Similar to -tused except that the functions are given internal linkage. This is
intended to provide a very simple mechanism for those getting started with tem-
plates. The compiler will instantiate the functions that are used in each compila-
tion unit as local functions, and the program will link and run correctly (barring
problems due to multiple copies of local static variables.) However, one may end
up with many copies of the instantiated functions, so this is not suitable for pro-
duction use. -tlocal can not be used in conjunction with automatic template
instantiation. If automatic instantiation is enabled by default, it will be disabled

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 70

by the -tlocal option. If automatic instantiation is not enabled by default, use
of -tlocal and -T is an error.

In the case where the eccp script is given a single file to compile and link, e.g.,

eccp t.c
the compiler knows that all instantiations will have to be done in the single source file. Therefore, it uses the -tused
mode and suppresses automatic instantiation.

1.12.3 Instantiation #pragma Directives

Instantiation pragmas can be used to control the instantiation of specific template entities or sets of template entities.
There are three instantiation pragmas:

• The instantiate pragma causes a specified entity to be instantiated.

• The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used to
suppress the instantiation of an entity for which a specific definition will be supplied.

• The can_instantiate pragma indicates that a specified entity can be instantiated in the current compilation,
but need not be; it is used in conjunction with automatic instantiation, to indicate potential sites for instantiation if

the template entity turns out to be required.1

The argument to the instantiation pragma may be:

a template class name A<int>

a template class declaration class A<int>

a member function name A<int>::f

a static data member name A<int>::i

a static data member decl. int A<int>::i

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

a template variable name x<int>

A pragma in which the argument is a template class name (e.g., A<int> or class A<int>) is equivalent to
repeating the pragma for each member function and static data member declared in the class. When instantiating an
entire class a given member function or static data member may be excluded using the do_not_instantiate
pragma. For example,

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur. If an
instantiation is explicitly requested by use of the instantiate pragma and no template definition is available or a
specific definition is provided, an error is issued.

1.At the moment, the can_instantiate pragma ends up forcing the instantiation of the template instance even if it isn’t refer-
enced somewhere else in the program; that’s a weakness of the initial implementation which we expect to address.

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 71

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided
void f1(int) {} // Specific definition
void main()
{
 int i;
 double d;
 f1(i);
 f1(d);
 g1(i);
 g1(d);
}
#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

f1(double) and g1(double) will not be instantiated (because no bodies were supplied) but no errors will be
produced during the compilation (if no bodies are supplied at link time, a linker error will be produced).

A member function name (e.g., A<int>::f) can only be used as a pragma argument if it refers to a single user
defined member function (i.e., not an overloaded function). Compiler-generated functions are not considered, so a
name may refer to a user defined constructor even if a compiler-generated copy constructor of the same name exists.
Overloaded member functions can be instantiated by providing the complete member function declaration, as in

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated function, an inline function, or a pure
virtual function.

1.12.4 Implicit Inclusion

When implicit inclusion is enabled, the front end is given permission to assume that if it needs a definition to instan-
tiate a template entity declared in a “.h” file it can implicitly include the corresponding “.C” file to get the source
code for the definition. For example, if a template entity ABC::f is declared in file xyz.h, and an instantiation of
ABC::f is required in a compilation but no definition of ABC::f appears in the source code processed by the com-
pilation, the compiler will look to see if a file xyz.C exists, and if so it will process it as if it were included at the end
of the main source file.

To find the template definition file for a given template entity the front end needs to know the path name specified in
the original include of the file in which the template was declared and whether the file was included using the system
include syntax (e.g., #include <file.h>). This information is not available for preprocessed source containing
#line directives. Consequently, the front end will not attempt implicit inclusion for source code containing #line
directives.

The file to be implicitly included is found by replacing the file suffix with each of the suffixes specified in the instan-
tiation file suffix list. The normal include search path mechanism is then used to look for the file to be implicitly
included.

DEFAULT_INSTANTIATION_FILE_SUFFIX_LIST defines the set of definition-file suffixes tried. By default,
the list is “.c”, “.C”, “.cpp”, “.CPP”, “.cxx”, “.CXX”, and “.cc”.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They can be enabled or
disabled independently, and implicit inclusion is still useful when automatic instantiation is not done.

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 72

The implicit inclusion mode can be configured out altogether by setting the configuration flag INSTANTIA-
TION_BY_IMPLICIT_INCLUSION to FALSE. It can be turned on or off using the --implicit_include
and --no_implicit_include command-line options.

Implicit inclusions are only performed during the normal compilation of a file, (i.e., not when doing only preprocess-
ing). A common means of investigating certain kinds of problems is to produce a preprocessed source file that can be
inspected. When using implicit inclusion it is sometimes desirable for the preprocessed source file to include any
implicitly included files. This may be done using the --no_preproc_only command line option. This causes the
preprocessed output to be generated as part of a normal compilation. When implicit inclusion is being used, the
implicitly included files will appear as part of the preprocessed output in the precise location at which they were
included in the compilation.

1.12.5 Exported Templates

Exported templates are templates declared with the keyword export. Exporting a class template is equivalent to
exporting each of its static data members and each of its non-inline member functions. An exported template is
special because its definition does not need to be present in a translation unit that uses that template. In other words,
the definition of an exported (non-class) template does not need to be explicitly or implicitly included in a translation
unit that instantiates that template. For example, the following is a valid C++ program consisting of two separate
translation units:

// File 1:
#include <stdio.h>
static void trace() { printf("File 1\n"); }

export template<class T> T const& min(T const&, T const&);
int main() {
 trace();
 return min(2, 3);
}

// File 2:
#include <stdio.h>
static void trace() { printf("File 2\n"); }

export template<class T> T const& min(T const &a, T const &b) {
 trace();
 return a<b? a: b;
}

Note that these two files are separate translation units: one is not included in the other. That allows the two functions
trace() to coexist (with internal linkage).

Support for exported templates can be enabled using the --export command-line option (it is enabled by default in
strict ANSI mode; -A or --strict). For example, the program above could be built as follows using the eccp
script:

eccp --export -c file_1.c
eccp --export -c file_2.c
eccp file_1.o file_2.o

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 73

1.12.5.1 Finding the exported template definition

The automatic instantiation of exported templates is somewhat similar (from a user’s perspective) to that of regular
(included) templates. However, an instantiation of an exported template involves at least two translation units: one
which requires the instantiation, and one which contains the template definition.

When a file containing definitions of exported templates is compiled, a file with a “.et” suffix is created and some
extra information is included in the associated “.ti” file. The “.et” files are used later by the front end to find the
translation unit that defines a given exported template.

When a file that potentially makes use of exported templates is compiled, the compiler must be told where to look for
“.et” files for exported templates used by a given translation unit. By default, the compiler looks in the current
directory. Other directories may be specified with the --template_directory option. Strictly speaking, the
“.et” files are only really needed when it comes time to generate an instantiation. This means that code using
exported templates can be compiled without having the definitions of those templates available. Those definitions
must be available by the time prelinking is done (or when explicit instantiation is done).

The “.et” files only inform the front end about the location of exported template definitions; they do not actually
contain those definitions. The sources containing the exported template definitions must therefore be made available
at the time of instantiation (usually, when prelinking is done). In particular, the export facility is not a mechanism for
avoiding the publication of template definitions in source form.

1.12.5.2 Secondary translation units

An instantiation of an exported template can be triggered by the prelinker, by an explicit instantiation directive, or by
the -tused command-line option. In each case, the translation unit that contains the initial point of instantiation will
be processed as the primary translation unit. Based on information it finds in the “.et” files, the front end will then
load and parse the translation unit containing the definition of the template to instantiate. This is a secondary transla-
tion unit. The simultaneous processing of the primary and secondary translation units enables the front end to create
instantiations of the exported templates (which can include entities from both translation units). This process may
reveal the need for additional instantiations of exported templates, which in turn can cause additional secondary

translation units to be loaded1.

When secondary translation units are processed, the declarations they contain are checked for consistency. This
process may report errors that would otherwise not be caught. Many these errors are so-called “ODR violations”
(ODR stands for “one-definition rule”). For example:

// File 1:
struct X {
 int x;
};

int main() {
 return min(2, 3);
}

// File 2:

1.As a consequence, using exported templates may require considerably more memory that similar uses of regular (included) tem-
plates.

1.12 Template Instantiation

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 74

struct X {
 unsigned x; // Error: X::x declared differently in File 1
};

export template<class T> T const& min(T const &a, T const &b) {
 return a<b? a: b;
}

If there are no errors, the instantiations are generated in the output associated with the primary translation unit (or in
separate associated files in one-instantiation-per-object mode). This may also require that entities with internal
linkage in secondary translation units be “externalized” so they can be accessed from the instantiations in the primary
translation unit.

1.12.5.3 Libraries with exported templates

Typically a (non-export) library consists of an include directory and a lib directory. The include directory contains the
header files required by users of the library and the lib directory contains the object code libraries that client programs
must use when linking programs.

With exported templates, users of the library must also have access to the source code of the exported templates and
the information contained in the associated “.et” files. This information should be placed in a directory that is dis-
tributed along with the include and lib directories: This is the export directory. It must be specified using the --tem-
plate_directory option when compiling client programs.

The recommended procedure to build the export directory is as follows:

1. For each “.et” file in the original source directory, copy the associated source file to the export directory.

2. Concatenate all of the “.et” files into a single “.et” file (e.g., mylib.et) in the export directory. The individ-
ual “.et” files could be copied to the export directory, but having all of the “.et” information in one file will
make use of the library more efficient.

3. Create an export_info file in the export directory. The export_info file specifies the include search paths
to be used when recompiling files in the export directory. If no export_info file is provided, the include
search path used when compiling the client program that uses the library will also be used to recompile the library
exported template files.

The export_info file consists of a series of lines of the form

include=x
or

sys_include=x
where x is a path name to be placed on the include search path. The directories are searched in the order in which they
are encountered in the export_info file. The file can also contain comments—which begin with a “#”—and
blank lines. Spaces are ignored but tabs are not currently permitted. For example:

The include directories to be used for the xyz library

include = /disk1/xyz/include
sys_include = /disk2/abc/include
include=/disk3/jkl/include

The include search path specified for a client program is ignored by the front end when it processes the source in the
export library, except when no export_info file is provided. Command-line macro definitions specified for a

1.13 Extern Inline Functions

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 75

client program are also ignored by the front end when processing a source file from the export libary; the command-
line macros specified when the corresponding “.et” file was produced do apply. All other compilation options
(other than the include search path and command-line macro definitions) used when recompiling the exported tem-
plates will be used to compile the client program.

When a library is installed on a new system, it is likely that the export_info file will need to be adapted to reflect
the location of the required headers on that system.

1.13 Extern Inline Functions

Depending on the way in which the front end is configured, out-of-line copies of extern inline functions are either
implemented using static functions, or are instantiated using a mechanism like the template instantiation mechanism.
Note that out-of-line copies of inline functions are only required in cases where the function cannot be inlined, or
when the address of the function is taken (whether explicitly by the user, by implicitly generated functions, or by
compiler-generated data structures such as virtual function tables or exception handling tables).

When static functions are used, local static variables of the functions are promoted to global variables with specially
encoded names, so that even though there may be multiple copies of the code, there is only one copy of such global
variables. This mechanism does not strictly conform to the standard because the address of an extern inline function
is not constant across translation units.

When the instantiation mechanism is used, the address of an extern inline function is constant across translation units,
but at the cost of requiring the use of one of the template instantiation mechanisms, even for programs that don’t use
templates. Definitions of extern inline functions can be provided either through use of the automatic instantiation
mechanism or by use of the -tused or -tall instantiation modes. There is no mechanism to manually control the
definition of extern inline function bodies.

1.14 Predefined Macros

The front end defines a number of preprocessing macros. Many of them are only defined under certain circumstances.
This section describes the macros that are provided and the circumstances under which they are defined. In addition,
a table of predefined macro definitions may be processed when the compiler is invoked. This may be used for any
kind of predefined macro, but in particular is used to define the macros that gcc and g++ define when using gcc and
g++ modes. The format of the file and other information is described in section 18.16, “Predefined Macro Definition
File,” on page 482.

__STDC__ Defined in ANSI C mode and in C++ mode. In C++ mode the value may be rede-
fined. Not defined in Microsoft compatibility mode.

__DATE__ Defined in all modes to the date of the compilation in the form “Mmm dd yyyy”.

__TIME__ Defined in all modes to the time of the compilation in the form “hh:mm:ss”.

__FILE__ Defined in all modes to the name of the current source file.

__LINE__ Defined in all modes to the current source line number within the current source
file.

__cplusplus Defined in C++ modes. In general, the value is 201103L if C++11 features are
enabled and either 1 or 199711L otherwise, but which of those three values is
chosen depends on the emulation (compiler and version).

1.14 Predefined Macros

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 76

c_plusplus Defined in cfront mode.

__cplusplus_cli Defined in C++/CLI mode with the value 200406L.

__STDC_VERSION__ Defined in ANSI C mode with the value 199409L. The name of this macro, and
its value, are specified in Normative Addendum 1 of the ISO C90 Standard. In
C99 mode, defined with the value 199901L.

__STDC_HOSTED__ Defined in C99 and C++11 modes with the value specified by the STD-
C_HOSTED configuration macro.

__STDC_IEC_559__ Defined in C99 mode if the configuration macro STDC_IEC_559 is TRUE.

__STDC_IEC_559_COMPLEX__
Defined in C99 mode if the configuration macro STDC_IEC_559_COMPLEX is
TRUE.

__STDC_ISO_10646__ Defined in C99 mode if the configuration macro STDC_ISO_10646 is TRUE.
The value is specified by the STDC_ISO_10646_VALUE macro.

__STDC_MB_MIGHT_NEQ_WC__
Defined in C99 mode if the configuration macro STDC_MB_MIGHT_NEQ_WC is
TRUE.

__SIGNED_CHARS__ Defined when plain char is signed. This is used in the <limits.h> header
file to get the proper definitions of CHAR_MAX and CHAR_MIN.

__FUNCTION__ Defined in all modes to the name of the current function. An error is issued if it is
used outside of a function. An EDG, GNU, and Microsoft extension. (Depending
on the current mode, this identifier behaves as a variable or as a string literal;
never as a preprocessor macro.)

__func__ Same as __FUNCTION__ in C99, C++11, and GNU modes. (This identifier
behaves as a variable; not as a preprocessor macro.)

__PRETTY_FUNCTION__ Defined in all modes to the name of the current function. This includes the return
type and parameter types of the function. An error is issued if it is used outside of
a function. An EDG and GNU extension. (Depending on the current mode, this
identifier behaves as a variable or as a string literal; never as a preprocessor
macro.)

__FUNCSIG__ Same as __PRETTY_FUNCTION__ in Microsoft mode. (This identifier
behaves as a string literal; not as a preprocessor macro.)

__FUNCDNAME__ Defined to the “decorated” name of the current function (i.e., its mangled name)
in Microsoft mode. (This identifier behaves as a string literal; not as a preproces-
sor macro.)

__BASE_FILE__ Defined in all modes. Similar to __FILE__ but indicates the primary source file
rather than the current one (i.e., when the current file is an included file).

_WCHAR_T Defined in C++ mode when wchar_t is a keyword. The name of this macro and
whether it is predefined are specified by configuration options. _WCHAR_T is the
default.

_WCHAR_T_DEFINED Defined in Microsoft C++ mode when wchar_t is a keyword.

_NATIVE_WCHAR_T_DEFINED

1.14 Predefined Macros

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 77

Defined in Microsoft C++ mode when wchar_t is a keyword (Microsoft
version 1300 and above).

_BOOL Defined in C++ mode when bool is a keyword. The name of this macro and
whether it is predefined are specified by configuration options. _BOOL is the
default.

__BOOL_DEFINED Defined in Microsoft C++ mode when bool is a keyword.

__ARRAY_OPERATORS Defined in C++ mode when array new and delete are enabled. The name of this
macro and whether it is predefined are specified by configuration options.
__ARRAY_OPERATORS is the default.

__EXCEPTIONS Defined in C++ mode when exception handling is enabled. The name of this
macro and whether it is predefined are specified by configuration options.
__EXCEPTIONS is the default.

__RTTI Defined in C++ mode when RTTI is enabled. The name of this macro and
whether it is predefined are specified by configuration options. __RTTI is the
default.

__PLACEMENT_DELETE Defined in C++ mode when placement delete is enabled. The name of this macro
and whether it is predefined are specified by configuration options. __PLACE-
MENT_DELETE is the default. Placement delete is enabled when ABI_CHANG-
ES_FOR_PLACEMENT_DELETE is TRUE and exception handling is enabled.

__NO_LONG_LONG Defined in all modes when the long long type is not supported. The name of
this macro and whether it is predefined are specified by configuration options.
__NO_LONG_LONG is the default.

__EDG_RUNTIME_USES_NAMESPACES
Defined in C++ mode when the configuration flag RUNTIME_USES_NAME-
SPACES is TRUE. The name of this macro and whether it is predefined are spec-
ified by configuration options. __EDG_RUNTIME_USES_NAMESPACES is the
default.

__EDG_IMPLICIT_USING_STD
Defined in C++ mode when the configuration flag RUNTIME_USES_NAME-
SPACES is TRUE and when implicit_using_std has been set to TRUE,
either by a command line option or by the configuration flag DEFAULT_IM-
PLICIT_USING_STD, indicating that the standard header files should implic-
itly do a using-directive on the std namespace. The name of this macro and
whether it is predefined are specified by configuration options. __EDG_IM-
PLICIT_USING_STD is the default.

__EDG_TYPE_TRAITS_ENABLED
Defined in non-Microsoft modes when type traits pseudo-functions (to ease the
implementation of ISO/IEC TR 19768; e.g., “__is_union”) are enabled. The
name of this predefined macro is specified by a configuration option. __EDG_-
TYPE_TRAITS_ENABLED is the default.

__EDG__ Always defined.

__EDG_VERSION__ Defined to an integral value that represents the version number of the front end.
For example. version 2.30 is represented as 230.

1.14 Predefined Macros

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 78

__EDG_IA64_ABI Defined as 1 when using a front end configured to use the IA-64 ABI.

__embedded_cplusplus Defined as 1 in Embedded C++ mode.

_CHAR_UNSIGNED Defined in Microsoft mode when char is unsigned.

_MSC_VER Defined in Microsoft mode to the version number of the Microsoft compiler that
is to be emulated. For example, 1100 is the value that corresponds to Visual C++
version 5.0.

_MSC_BUILD Defined in Microsoft mode to the value of microsoft_build_number.

_M_CEE Defined in Microsoft mode when C++/CLI mode is in effect (e.g., when --
cppcli is specified).

_MSC_EXTENSIONS Defined in Microsoft mode.

_WIN32 Defined (unconditionally) in Microsoft mode.

_WIN64 Defined in Microsoft mode when targ_supports_x86_64 is TRUE.

_INTEGRAL_MAX_BITS Defined in Microsoft mode to the number of bits in the largest integral type that
is supported. The value depends on the way in which the front end was config-
ured.

_CPPRTTI Defined in Microsoft mode C++ when RTTI is enabled.

__GNUC__ Defined in GNU mode to the value specified by the GCC_VERSION configura-
tion macro.

__GNUC_MINOR__ Defined in GNU mode to the value specified by the GCC_MINOR_VERSION
configuration macro.

__VERSION__ Defined in GNU mode to the value specified by the GCC_VERSION_STRING
configuration macro.

__PRAGMA_REDEFINE_EXTNAME
Defined if all modes when the configuration flag REDEFINE_EXTNAM-
E_PRAGMA_ENABLED is TRUE.

__upc__ Defined when UPC extensions are enabled.

__COUNTER__ Defined in Microsoft mode. Returns an integer value, starting with zero and
incremented each time the macro is used.

__TIMESTAMP__ Defined in Microsoft mode. Returns a string literal containing the modification
date and time of the source file in which it is specified.

__EDG_IA64_ABI Defined in C++ mode when using the IA-64 ABI. The name of this predefined
macro is specified by a configuration option. __EDG_IA64_ABI is the default.

__EDG_IA64_ABI_USE_INT_STATIC_INIT_GUARD
Defined in C++ mode when using the IA-64 ABI when guard variables are int-
sized (i.e., in the ARM EABI). The name of this predefined macro is specified by
a configuration option. __EDG_IA64_ABI_USE_INT_STAT-
IC_INIT_GUARD is the default.

1.15 Pragmas

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 79

__EDG_IA64_ABI_VARIANT_CTORS_AND_DTORS_RETURN_THIS

Defined in C++ mode when using the IA-64 ABI when constructors and destruc-
tors return the this pointer (i.e., in the ARM EABI). The name of this pre-
defined macro is specified by a configuration option.
__EDG_IA64_ABI_VARIANT_CTORS_AND_DTORS_RETURN_THIS is the
default.

__EDG_SIZE_TYPE__ Defined to be the type of size_t.

__EDG_PTRDIFF_TYPE__
Defined to be the type of ptrdiff_t.

__CHAR16_T_AND_CHAR32_T
Defined in C++ mode when char16_t and char32_t are keywords. The
name of this macro and whether it is predefined are specified by configuration
options. __CHAR16_T_AND_CHAR32_T is the default.

__CHAR16_TYPE__ Defined in GNU mode as the underlying type for char16_t (GNU version
40400 and above).

__CHAR32_TYPE__ Defined in GNU mode as the underlying type for char32_t (GNU version
40400 and above).

__VARIADIC_TEMPLATES
Defined in C++ mode when variadic templates are supported. The name of this
macro and whether it is predefined are specified by configuration options.
__VARIADIC_TEMPLATES is the default.

__STDCPP_THREADS__ Defined in C++ mode when the implementation supports multiple threads (i.e.,
when IMPLEMENTATION_SUPPORTS_MULTIPLE_THREADS is TRUE and
the global variable std_thread_local_storage_specifier_en-
abled is TRUE).

1.15 Pragmas

#pragma directives are used within the source program to request certain kinds of special processing. The
#pragma directive is part of the standard C and C++ languages, but the meaning of any pragma is implementation-
defined.

1.15.1 Instantiation Pragmas

The following are described in detail in the template instantiation section of this chapter:

#pragma instantiate
#pragma do_not_instantiate
#pragma can_instantiate

1.15.2 Precompiled Header Pragmas

The following are described in the section on precompiled header processing:

1.15 Pragmas

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 80

#pragma hdrstop
#pragma no_pch

1.15.3 Once Pragma

The front end also recognizes #pragma once, which, when placed at the beginning of a header file, indicates that
the file is written in such a way that including it several times has the same effect as including it once. Thus, if the
front end sees #pragma once at the start of a header file, it will skip over it if the file is #included again.

A typical idiom is to place an #ifndef guard around the body of the file, with a #define of the guard variable
after the #ifndef:

#pragma once // optional
#ifndef FILE_H
#define FILE_H
... body of the header file ...
#endif

The #pragma once is marked as optional in this example, because the front end recognizes the #ifndef idiom
and does the optimization even in its absence. #pragma once is accepted for compatibility with other compilers
and to allow the programmer to use other guard-code idioms.

1.15.4 Diagnostic Pragmas

The following pragmas may be used to control the error severity used when a given diagnostic message is issued.

#pragma diag_suppress
#pragma diag_remark
#pragma diag_warning
#pragma diag_error
#pragma diag_default
#pragma diag_once

 These are similar in function to the equivalent command-line options. Uses of these pragmas have the following
form:

#pragma diag_xxx [=] error_number_or_tag, error_number_or_tag ...

The diagnostic affected is specified using either an error number or an error tag name. The “=” is optional. Any diag-
nostic may be overridden to be an error, but only diagnostics with a severity of discretionary error or below may have
their severity reduced to a warning or below, or be suppressed. The diag_default pragma is used to return the
severity of a diagnostic to the one that was in effect before any pragmas were issued (i.e., the normal severity of the
message as modified by any command-line options). The following example suppresses the “pointless friend declara-
tion” warning on the declaration of class A:

#pragma diag_suppress 522
class A { friend class A; };
#pragma diag_default 522
class B { friend class B; };

The diag_once pragma causes the specified diagnostics to be issued only once as a warning or remark.

1.15 Pragmas

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 81

1.15.5 Pack Pragma

When USER_CONTROL_OF_STRUCT_PACKING is TRUE, #pragma pack is recognized. It is used to specify
the maximum alignment allowed for nonstatic data members of structs and classes, even if that alignment is less than
the alignment dictated by the member’s type.

The basic syntax is:

#pragma pack(n)
#pragma pack()

where argument n, a power-of-2 value within the range defined by TARG_MINIMUM_PACK_ALIGNMENT and
TARG_MAXIMUM_PACK_ALIGNMENT, is the new packing alignment that is to go into effect for subsequent decla-
rations, until another #pragma pack is seen. The second form cancels the effect of a preceding #pragma
pack(n) and either restores the default packing alignment specified by the --pack_alignment command-line
option or, if the option was not used, disables the packing of structs and classes.

An enhanced syntax (intended to be compatible with the similar facility offered by Microsoft C/C++ compilers) is
also supported in which keywords push and pop can be used to manage a stack of packing alignment values — for
instance:

#pragma pack (push, xxx, 16)
 /* Packing alignment set to 16. */
#include "xxx.h"
#pragma pack (pop, xxx)
 /* Packing alignment reset to what it was prior to the
 above #pragma pack directive, even if the included header
 left some unrelated pragma pack entries on the stack. */

which has the effect saving the current packing alignment value and establishing a new one, processing the include
file (which may leave the packing alignment with an unknown setting), and restoring the original value. Finally, the
form

#pragma pack(show)
causes the front end to emit a warning describing the current setting of the maximum member alignment (if any).

In C++ a #pragma pack directive has “local” effect when it appears inside a function template, an instantiation of
a class template, or the body of a member function or friend function that is defined within a class definition. When
such a context is entered, the current pack alignment state is saved, so that it can be restored when the context is
exited. For example,

template <class T> class A {
 :
#pragma pack(1)
 :
};
#pragma pack(4)
main() {
 A<int> a; // #pragma pack(1) is local to A<int>
 struct S { char c; int i; }; // sizeof(S) == 8, not 5
}

Moreover, within an instantiation of a class or function template, the default pack alignment is that which is in effect
at the point of the template’s definition, not at the point of its instantiation. Here is an example:

#pragma pack(1)
template <class T> int f(T) {
 struct S { char c; int i; }; // default pack alignment is 1 for each
 return sizeof(S); // instance of f<T>

1.15 Pragmas

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 82

}
#pragma pack(4)
main() {
 int i = f(0); // i = 5, not 8
}

These rules apply to inline-defined member functions, too, because their bodies are also scanned “out of order” rela-
tive to the textual order of the source program (i.e., not till all the class members have been declared).

#pragma pack(4)
struct A {
 int f() {
#pragma pack(1) // #pragma pack(1) is local to A::f
 struct S { char c; int i; }; // sizeof(S) is 5
 }
 int g() {
 struct S { char c; int i; }; // sizeof(S) is 8
 }
#pragma pack(1)
 int h() {
 struct S { char c; int i; }; // sizeof(S) is 5
 }
};

When IDENT_DIRECTIVE_AND_PRAGMA is TRUE, #pragma ident is recognized, as is #ident:

#pragma ident "string"
#ident "string"

Both are implemented by recording the string in a pragma entry and passing it to the back end.

When PRAGMA_WEAK_ALLOWED is TRUE, #pragma weak is recognized. Its form is

#pragma weak name1 [= name2]

where name1 is the name to be given “weak binding” and is a synonym for name2 if the latter is specified. The entire
argument string is recorded in the pragma entry and passed to the back end.

1.15.6 Microsoft Pragmas

The following pragmas are accepted in Microsoft mode:

#pragma push_macro(“identifier”)
#pragma pop_macro(“identifier”)
#pragma include_alias(“a_long_file_name.h”, “short.h”)

In addition, when NATIVE_MULTIBYTE_CHARS_SUPPORTED_WITH_UNICODE is TRUE, the setlocale
pragma is accepted:

#pragma setlocale(“locale name”)

The pack pragma is also accepted by the Microsoft compiler, but its acceptance by the front end is controlled by a
separate configuration flag, not by whether or not Microsoft mode is being used.

1.15.7 IL Display Pragma

As a debugging aid, in configurations where NEED_IL_DISPLAY is TRUE, the il_display pragma can be used
to display the underlying IL for the IL entity that the pragma is attached to. The il_display pragma is a

1.16 Precompiled Headers

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 83

pbk_next_construct pragma that attaches to the subsequent declaration or statement and displays the IL asso-
ciated with that entity. Note that the IL displayed represents the IL at the current point in the compilation and may not
accurately reflect the eventual IL. This can be useful for displaying source location information. For example:

struct A { int x, y; };
void f(int i) {
#pragma il_display
 A a = { 1, 2 };
#pragma il_display
 i++;
}

1.16 Precompiled Headers

It is often desirable to avoid recompiling a set of header files, especially when they introduce many lines of code and
the primary source files that #include them are relatively small. The EDG front end provides a mechanism for, in
effect, taking a snapshot of the state of the compilation at a particular point and writing it to a disk file before com-
pleting the compilation; then, when recompiling the same source file or compiling another file with the same set of
header files, it can recognize the “snapshot point,” verify that the corresponding precompiled header (“PCH”) file is
reusable, and read it back in. Under the right circumstances, this can produce a dramatic improvement in compilation
time; the trade-off is that PCH files can take a lot of disk space.

1.16.1 Automatic Precompiled Header Processing

When --pch appears on the command line, automatic precompiled header processing is enabled. This means the
front end will automatically look for a qualifying precompiled header file to read in and/or will create one for use on
a subsequent compilation.

The PCH file will contain a snapshot of all the code preceding the “header stop” point. The header stop point is typi-
cally the first token in the primary source file that does not belong to a preprocessing directive, but it can also be spec-
ified directly by #pragma hdrstop (see below) if that comes first. For example:

#include "xxx.h"
#include "yyy.h"
int i;

The header stop point is int (the first non-preprocessor token) and the PCH file will contain a snapshot reflecting the
inclusion of xxx.h and yyy.h. If the first non-preprocessor token or the #pragma hdrstop appears within a
#if block, the header stop point is the outermost enclosing #if. To illustrate, here’s a more complicated example:

#include "xxx.h"
#ifndef YYY_H
#define YYY_H 1
#include "yyy.h"
#endif
#if TEST
int i;
#endif

Here, the first token that does not belong to a preprocessing directive is again int, but the header stop point is the
start of the #if block containing it. The PCH file will reflect the inclusion of xxx.h and conditionally the defini-
tion of YYY_H and inclusion of yyy.h; it will not contain the state produced by #if TEST.

1.16 Precompiled Headers

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 84

A PCH file will be produced only if the header stop point and the code preceding it (mainly, the header files them-
selves) meet certain requirements:

• The header stop point must appear at file scope — it may not be within an unclosed scope established by a header
file. For example, a PCH file will not be created in this case:

// xxx.h
class A {
// xxx.C
#include "xxx.h"
int i; };

• The header stop point may not be inside a declaration started within a header file, nor (in C++) may it be part of a
declaration list of a linkage specification. For example, in the following case the header stop point is int, but
since it is not the start of a new declaration, no PCH file will be created:

// yyy.h
static
// yyy.C
#include "yyy.h"
int i;

• Similarly, the header stop point may not be inside a #if block or a #define started within a header file.

• The processing preceding the header stop must not have produced any errors. (Note: warnings and other diagnos-
tics will not be reproduced when the PCH file is reused.)

• No references to predefined macros __DATE__ or __TIME__ may have appeared.

• No use of the #line preprocessing directive may have appeared.

• #pragma no_pch (see below) must not have appeared.

• The code preceding the header stop point must have introduced a sufficient number of declarations to justify the
overhead associated with precompiled headers. This is configurable — see PCH_DECL_SEQ_THRESHOLD.

When the host system does not support memory mapping, so that everything to be saved in the precompiled header
file is assigned to preallocated memory (i.e., when USE_MMAP_FOR_MEMORY_REGIONS is FALSE), two addi-
tional restrictions apply:

• The total memory needed at the header stop point cannot exceed the size of the block of preallocated memory.

• No single program entity saved can exceed HOST_ALLOCATION_INCREMENT, the preallocation unit.

When a precompiled header file is produced, it contains, in addition to the snapshot of the compiler state, some infor-
mation that can be checked to determine under what circumstances it can be reused. This includes:

• The compiler version, including the date and time the compiler was built.

• The current directory (i.e., the directory in which the compilation is occurring).

• The command line options.

• The initial sequence of preprocessing directives from the primary source file, including #include directives.

• The date and time of the header files specified in #include directives.

1.16 Precompiled Headers

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 85

This information comprises the PCH “prefix.” The prefix information of a given source file can be compared to the
prefix information of a PCH file to determine whether the latter is applicable to the current compilation.

As an illustration, consider two source files:

// a.C
#include "xxx.h"
... // Start of code
// b.C
#include "xxx.h"
... // Start of code

When a.C is compiled with --pch, a precompiled header file named a.pch is created. Then, when b.C is com-
piled (or when a.C is recompiled), the prefix section of a.pch is read in for comparison with the current source file.
If the command line options are identical, if xxx.h has not been modified, and so forth, then, instead of opening
xxx.h and processing it line by line, the front end reads in the rest of a.pch and thereby establishes the state for the
rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the largest (i.e., the one representing
the most preprocessing directives from the primary source file) is used. For instance, consider a primary source file
that begins with

#include "xxx.h"
#include "yyy.h"
#include "zzz.h"

If there is one PCH file for xxx.h and a second for xxx.h and yyy.h, the latter will be selected (assuming both
are applicable to the current compilation). Moreover, after the PCH file for the first two headers is read in and the
third is compiled, a new PCH file for all three headers may be created.

When a precompiled header file is created, it takes the name of the primary source file, with the suffix replaced by an
implementation-specified suffix (see PCH_FILE_SUFFIX, which is set to pch by default). Unless --pch_dir is
specified (see below), it is created in the directory of the primary source file.

When a precompiled header file is created or used, a message such as

"test.C": creating precompiled header file "test.pch"
is issued. The user may suppress the message by using the command-line option --no_pch_messages.

When the --pch_verbose option is used the front end will display a message for each precompiled header file
that is considered that cannot be used giving the reason that it cannot be used.

In automatic mode (i.e., when --pch is used) the front end will deem a precompiled header file obsolete and delete
it under the following circumstances:

• if the precompiled header file is based on at least one out-of-date header file but is otherwise applicable for the
current compilation; or

• if the precompiled header file has the same base name as the source file being compiled (e.g., xxx.pch and
xxx.C) but is not applicable for the current compilation (e.g., because of different command-line options).

This handles some common cases; other PCH file clean-up must be dealt with by other means (e.g., by the user).

Support for precompiled header processing is not available when multiple source files are specified in a single compi-
lation: an error will be issued and the compilation aborted if the command line includes a request for precompiled
header processing and specifies more than one primary source file.

1.16 Precompiled Headers

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 86

1.16.2 Manual Precompiled Header Processing

Command-line option --create_pch file-name specifies that a precompiled header file of the specified name
should be created.

Command-line option --use_pch file-name specifies that the indicated precompiled header file should be used for
this compilation; if it is invalid (i.e., if its prefix does not match the prefix for the current primary source file), a
warning will be issued and the PCH file will not be used.

When either of these options is used in conjunction with --pch_dir, the indicated file name (which may be a path
name) is tacked on to the directory name, unless the file name is an absolute path name.

The --create_pch, --use_pch, and --pch options may not be used together. If more than one of these
options is specified, only the last one will apply. Nevertheless, most of the description of automatic PCH processing
applies to one or the other of these modes — header stop points are determined the same way, PCH file applicability
is determined the same way, and so forth.

1.16.3 Other Ways for Users to Control Precompiled Headers

There are several ways in which the user can control and/or tune how precompiled headers are created and used.

• #pragma hdrstop may be inserted in the primary source file at a point prior to the first token that does not
belong to a preprocessing directive. It enables the user to specify where the set of header files subject to precom-
pilation ends. For example,

#include "xxx.h"
#include "yyy.h"
#pragma hdrstop
#include "zzz.h"

Here, the precompiled header file will include processing state for xxx.h and yyy.h but not zzz.h. (This is
useful if the user decides that the information added by what follows the #pragma hdrstop does not justify
the creation of another PCH file.)

• #pragma no_pch may be used to suppress precompiled header processing for a given source file.

• Command-line option --pch_dir directory-name is used to specify the directory in which to search for and/or
create a PCH file.

Moreover, when the host system does not support memory mapping and preallocated memory is used instead (i.e.,
when USE_MMAP_FOR_MEMORY_REGIONS is FALSE) then one of the command-line options --pch, --cre-
ate_pch, or --use_pch, if it appears at all, must be the first option on the command line; and in addition:

• Command-line option --pch_mem size may be used to change the size of the preallocated block of memory
from its default value. The argument size is the number of 1024-byte units. (--pch_mem must also be among
the first options on the command line.)

1.16.4 Performance Issues

The relative overhead incurred in writing out and reading back in a precompiled header file is quite small for reason-
ably large header files. (An implementation can adjust PCH_DECL_SEQ_THRESHOLD to avoid creating precom-
piled header files with too little information in them.)

1.16 Precompiled Headers

Copyright 1992-2023 Edison Design Group, Inc. (version 6.6) 87

In general, it doesn’t cost much to write a precompiled header file out even if it does not end up being used, and if it
is used it almost always produces a significant speedup in compilation. The problem is that the precompiled header
files can be quite large (from a minimum of about 250K bytes to several megabytes or more), and so one probably
doesn’t want many of them sitting around.

Thus, despite the faster recompilations, precompiled header processing is not likely to be justified for an arbitrary set
of files with nonuniform initial sequences of preprocessing directives. Rather, the greatest benefit occurs when a
number of source files can share the same PCH file. The more sharing, the less disk space is consumed. With sharing,
the disadvantage of large precompiled header files can be minimized, without giving up the advantage of a significant
speedup in compilation times.

Consequently, to take full advantage of header file precompilation, users should expect to reorder the #include
sections of their source files and/or to group #include directives within a commonly used header file.

The EDG front end source provides an example of how this can be done. A common idiom is this:

#include "fe_common.h"
#pragma hdrstop
#include ...

where fe_common.h pulls in, directly and indirectly, a few dozen header files; the #pragma hdrstop is
inserted to get better sharing with fewer PCH files. The PCH file produced for fe_common.h is a bit over a mega-
byte in size. Another idiom, used by the source files involved in declaration processing, is this:

#include "fe_common.h"
#include "decl_hdrs.h"
#pragma hdrstop
#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger, PCH file is created. In all, the
fifty-odd source files of the EDG front end share just six precompiled header files. If disk space were at a premium,
one could decide to make fe_common.h pull in all the header files used — then, a single PCH file could be used in
building the EDG front end.

Different environments and different projects will have different needs, but in general, users should be aware that
making the best use of the precompiled header support will require some experimentation and probably some minor
changes to source code.

